Raj K Goyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426316/publications.pdf

Version: 2024-02-01

186265 243625 3,135 45 28 44 citations h-index g-index papers 47 47 47 2385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Enteric Nervous System. New England Journal of Medicine, 1996, 334, 1106-1115.	27.0	708
2	Physiology of Normal Esophageal Motility. Journal of Clinical Gastroenterology, 2008, 42, 610-619.	2.2	231
3	Advances in the physiology of gastric emptying. Neurogastroenterology and Motility, 2019, 31, e13546.	3.0	190
4	Genesis of Basal Sphincter Pressure: Effect of Tetrodotoxin on Lower Esophageal Sphincter Pressure in Opossum in Vivo. Gastroenterology, 1976, 71, 62-67.	1.3	184
5	Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology, 1992, 103, 197-204.	1.3	164
6	Lower Esophageal Sphincter Is Achalasic in nNOSâ^'/â^' and Hypotensive in W/Wv Mutant Mice. Gastroenterology, 2001, 121, 34-42.	1.3	154
7	IV. Current concepts of vagal efferent projections to the gut. American Journal of Physiology - Renal Physiology, 2003, 284, G357-G366.	3.4	129
8	Role of nitric oxide in lower esophageal sphincter relaxation to swallowing. Life Sciences, 1992, 50, 1263-1272.	4.3	121
9	Neural Control of the Lower Esophageal Sphincter INFLUENCE OF THE VAGUS NERVES. Journal of Clinical Investigation, 1974, 54, 899-906.	8.2	118
10	Differences in contractile protein content and isoforms in phasic and tonic smooth muscles. American Journal of Physiology - Cell Physiology, 1998, 275, C684-C692.	4.6	81
11	Seventy Years of Gastroenterology (1943–2013). Gastroenterology, 2013, 145, 1-15.	1.3	81
12	Effect of Hyperglycemia on Purinergic and Nitrergic Inhibitory Neuromuscular Transmission in the Antrum of the Stomach: Implications for Fast Gastric Emptying. Frontiers in Medicine, 2018, 5, 1.	2.6	71
13	Role of HERG-like K ⁺ currents in opossum esophageal circular smooth muscle. American Journal of Physiology - Cell Physiology, 1999, 277, C1284-C1290.	4.6	69
14	Pyloric Sphincter Dysfunction in nNOSâ^'/â^' and W/Wv Mutant Mice: Animal Models of Gastroparesis and Duodenogastric Reflux. Gastroenterology, 2008, 135, 1258-1266.	1.3	57
15	Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut. American Journal of Physiology - Renal Physiology, 2010, 298, G10-G13.	3.4	55
16	Membrane potential and mechanical responses of the opossum esophagus to vagal stimulation and swallowing. Gastroenterology, 1983, 85, 922-928.	1.3	49
17	Mechanics of Sphincter Action. STUDIES ON THE LOWER ESOPHAGEAL SPHINCTER. Journal of Clinical Investigation, 1973, 52, 2973-2978.	8.2	46
18	Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse. American Journal of Physiology - Renal Physiology, 2001, 280, G191-G200.	3.4	43

#	Article	IF	CITATIONS
19	Electrical activity of the opossum lower esophageal sphincter in vivo. Gastroenterology, 1978, 74, 835-840.	1.3	41
20	Structure-activity relationship of subtypes of cholecystokinin receptors in the cat lower esophageal sphincter. Gastroenterology, 1986, 90, 94-102.	1.3	40
21	Regional gradient of initial inhibition and refractoriness in esophageal smooth muscle. Gastroenterology, 1985, 89, 843-851.	1.3	38
22	Rapid gastric emptying in diabetes mellitus: Pathophysiology and clinical importance. Journal of Diabetes and Its Complications, 2019, 33, 107414.	2.3	38
23	Morphological Evaluation Of Opossum Lower Esophageal Sphincter. Gastroenterology, 1978, 75, 51-58.	1.3	37
24	A Green Tea Polyphenol, Epigallocatechin-3-Gallate, Induces Selective Apoptosis in Multiple Myeloma Cells: Mechanism of Action and Therapeutic Potential Blood, 2005, 106, 1590-1590.	1.4	36
25	Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology, 2000, 119, 1600-1609.	1.3	34
26	Differences in calmodulin and calmodulin-binding proteins in phasic and tonic smooth muscles. American Journal of Physiology - Cell Physiology, 2002, 282, C94-C104.	4.6	33
27	Pathogenesis of Achalasia: Lessons From Mutant Mice. Gastroenterology, 2010, 139, 1086-1090.	1.3	33
28	Evidence for NO \hat{a} redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut. American Journal of Physiology - Renal Physiology, 1998, 275, G1185-G1192.	3.4	28
29	Role of myosin Va in purinergic vesicular neurotransmission in the gut. American Journal of Physiology - Renal Physiology, 2012, 302, G598-G607.	3.4	28
30	Structure activity relationship of synaptic and junctional neurotransmission. Autonomic Neuroscience: Basic and Clinical, 2013, 176, 11-31.	2.8	28
31	Nitric oxide suppresses a Ca ²⁺ -stimulated Cl ^{â^'} current in smooth muscle cells of opossum esophagus. American Journal of Physiology - Renal Physiology, 1998, 274, G886-G890.	3.4	24
32	Active and inactive pools of nNOS in the nerve terminals in mouse gut: implications for nitrergic neurotransmission. American Journal of Physiology - Renal Physiology, 2008, 294, G627-G634.	3.4	22
33	Role of PSD95 in membrane association and catalytic activity of nNOSα in nitrergic varicosities in mice gut. American Journal of Physiology - Renal Physiology, 2009, 297, G806-G813.	3.4	20
34	Myosin Va plays a key role in nitrergic neurotransmission by transporting nNOS \hat{l}_{\pm} to enteric varicosity membrane. American Journal of Physiology - Renal Physiology, 2011, 301, G498-G507.	3.4	20
35	Gastric Emptying Abnormalities in Diabetes Mellitus. New England Journal of Medicine, 2021, 384, 1742-1751.	27.0	18
36	Evidence for \hat{I}^2 -Nicotinamide Adenine Dinucleotide as a Purinergic, Inhibitory Neurotransmitter in Doubt. Gastroenterology, 2011, 141, e27.	1.3	17

#	Article	IF	CITATIONS
37	CrossTalk opposing view: Interstitial cells are not involved and physiologically important in neuromuscular transmission in the gut. Journal of Physiology, 2016, 594, 1511-1513.	2.9	12
38	Imaging of Nitric Oxide in Nitrergic Neuromuscular Neurotransmission in the Gut. PLoS ONE, 2009, 4, e4990.	2.5	11
39	CaMKII inhibition hyperpolarizes membrane and blocks nitrergic IJP by closing a Cl ^{â^'} conductance in intestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2012, 303, G240-G246.	3.4	9
40	Effect of galanin and galanin antagonists on peristalsis in esophageal smooth muscle in the opossum. American Journal of Physiology - Renal Physiology, 2000, 279, G719-G725.	3.4	6
41	Revised role of interstitial cells of Cajal in cholinergic neurotransmission in the gut. Journal of Physiology, 2013, 591, 5413-5414.	2.9	4
42	Rebuttal from Raj K Goyal. Journal of Physiology, 2016, 594, 1517-1517.	2.9	3
43	G astroenterology 's Editors-in-Chief: Historical and Personal Perspectives of Their Editorships. Gastroenterology, 2013, 145, 16-31.	1.3	2
44	EndoFLIP Topography: Motor Patterns in an Obstructed Esophagus. Gastroenterology, 2022, 163, 552-555.	1.3	2
45	Outsourcing in the Healthcare Industry. , 0, , 1733-1759.		0