Takuya F Segawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242608/publications.pdf Version: 2024-02-01

TAKUVA E SECANAA

#	Article	IF	CITATIONS
1	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 6261-6265.	13.8	769
2	Exact Distances and Internal Dynamics of Perdeuterated Ubiquitin from NOE Buildups. Journal of the American Chemical Society, 2009, 131, 17215-17225.	13.7	91
3	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 6369-6373.	2.0	78
4	pH Nanosensor Using Electronic Spins in Diamond. ACS Nano, 2019, 13, 11726-11732.	14.6	68
5	Exchange Rate Constants of Invisible Protons in Proteins Determined by NMR Spectroscopy. ChemBioChem, 2008, 9, 537-542.	2.6	47
6	Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers. ACS Nano, 2019, 13, 6461-6468.	14.6	38
7	Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position. Scientific Reports, 2018, 8, 5463.	3.3	33
8	Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy. Journal of Chemical Physics, 2015, 143, 044201.	3.0	30
9	Nanodiamonds for bioapplications–specific targeting strategies. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129354.	2.4	30
10	Apparent Transverse Relaxation Rates in Systems with Scalar-Coupled Protons. Journal of the American Chemical Society, 2009, 131, 17538-17539.	13.7	21
11	Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy. Physical Review Letters, 2012, 109, 047602.	7.8	21
12	Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. Journal of Chemical Physics, 2016, 144, 194201.	3.0	20
13	Polychromatic Decoupling of a Manifold of Homonuclear Scalar Interactions in Solution‣tate NMR. Chemistry - A European Journal, 2012, 18, 11573-11576.	3.3	19
14	High-Resolution Quantum Sensing with Shaped Control Pulses. Physical Review Letters, 2017, 119, 260501.	7.8	19
15	Determination of transverse relaxation rates in systems with scalar-coupled spins: The role of antiphase coherences. Journal of Magnetic Resonance, 2013, 237, 139-146.	2.1	17
16	Transverse Relaxation of Scalar oupled Protons. ChemPhysChem, 2010, 11, 3343-3354.	2.1	15
17	Optical hyperpolarization of nitrogen donor spins in bulk diamond. Physical Review B, 2017, 95, .	3.2	15
18	Transverse interference peaks in chirp FT-EPR correlated three-pulse ESEEM spectra. Journal of Magnetic Resonance, 2016, 272, 37-45.	2.1	12

Takuya F Segawa

#	Article	IF	CITATIONS
19	Apparent transverse relaxation rates in systems with coupled carbon-13 spins. Physical Chemistry Chemical Physics, 2010, 12, 9772.	2.8	10
20	Fabrication of Detonation Nanodiamonds Containing Siliconâ€Vacancy Color Centers by High Temperature Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100144.	1.8	10
21	Quenching homonuclear couplings in magnetic resonance by trains of non-refocusing pulses. Journal of Magnetic Resonance, 2011, 211, 240-242.	2.1	8
22	Control of Cross Relaxation of Multipleâ€Quantum Coherences Induced by Fast Chemical Exchange under Heteronuclear Doubleâ€Resonance Irradiation. ChemPhysChem, 2011, 12, 333-341.	2.1	8
23	Room-temperature hyperpolarization of polycrystalline samples with optically polarized triplet electrons: pentacene or nitrogen-vacancy center in diamond?. Magnetic Resonance, 2021, 2, 33-48.	1.9	8
24	A simple and soft chemical deaggregation method producing single-digit detonation nanodiamonds. Nanoscale Advances, 2022, 4, 2268-2277.	4.6	8
25	How to Identify, Attribute, and Quantify Triplet Defects in Ensembles of Small Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 7438-7442.	4.6	6
26	Label-free tomographic imaging of nanodiamonds in living cells. Diamond and Related Materials, 2021, 118, 108517.	3.9	6
27	Anomalous Formation of Irradiation-Induced Nitrogen-Vacancy Centers in 5 nm-Sized Detonation Nanodiamonds. Journal of Physical Chemistry C, 2022, 126, 5206-5217.	3.1	6
28	Dynamic Nuclear Polarization and Other Magnetic Ideas at EPFL. Chimia, 2012, 66, 734.	0.6	3
29	Transverse Relaxation of Scalar Coupled Protons in Magnetic Resonance of Non-Deuterated Proteins. Applied Magnetic Resonance, 2012, 42, 353-361.	1.2	2
30	How to Tickle Spins with a Fourier Transform NMR Spectrometer. ChemPhysChem, 2013, 14, 369-373.	2.1	2
31	Exchange Rate Constants of Invisible Protons in Proteins Determined by NMR Spectroscopy. ChemBioChem, 2009, 10, 782-782.	2.6	Ο
32	Extending Timescales and Narrowing Linewidths in NMR. Chimia, 2011, 65, 652.	0.6	0
33	Titelbild: Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6215-6215.	2.0	0
34	Comment on "Sub-5 nm Nanodiamonds Fabricated by Plasma Immersion Ion Implantation as Fluorescent Probes― ACS Applied Nano Materials, 2021, 4, 5621-5623.	5.0	0