Hendrik Gerard Stunnenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426052/publications.pdf Version: 2024-02-01

		2696	2351
294	48,624	98	205
papers	citations	h-index	g-index
317	317	317	69947
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Research, 2022, 32, 1328-1342.	2.4	14
2	CBX2 shapes chromatin accessibility promoting AML via p38 MAPK signaling pathway. Molecular Cancer, 2022, 21, .	7.9	18
3	Recent insights into <i>Histone Acetyltransferase-1</i> : biological function and involvement in pathogenesis. Epigenetics, 2021, 16, 838-850.	1.3	21
4	Cell type-specific novel long non-coding RNA and circular RNA in the BLUEPRINT hematopoietic transcriptomes atlas. Haematologica, 2021, 106, 2613-2623.	1.7	12
5	Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nature Communications, 2021, 12, 651.	5.8	67
6	The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers, 2021, 13, 684.	1.7	27
7	A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation. Genome Research, 2021, 31, 919-933.	2.4	4
8	G1-phase progression in pluripotent stem cells. Cellular and Molecular Life Sciences, 2021, 78, 4507-4519.	2.4	6
9	Chronic HIV infection induces transcriptional and functional reprogramming of innate immune cells. JCI Insight, 2021, 6, .	2.3	33
10	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	3.3	34
11	Clonal evolution of acute myeloid leukemia with <i>FLT3</i> -ITD mutation under treatment with midostaurin. Blood, 2021, 137, 3093-3104.	0.6	91
12	The Organoid Cell Atlas. Nature Biotechnology, 2021, 39, 13-17.	9.4	96
13	Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
14	p120-catenin-dependent collective brain infiltration by glioma cell networks. Nature Cell Biology, 2020, 22, 97-107.	4.6	79
15	Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports, 2020, 14, 175-183.	2.3	22
16	Controlled Human Malaria Infection Induces Long-Term Functional Changes in Monocytes. Frontiers in Molecular Biosciences, 2020, 7, 604553.	1.6	13
17	Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. Journal of Experimental Medicine, 2020, 217, .	4.2	15
18	STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biology, 2020, 21, 243.	3.8	48

#	Article	IF	CITATIONS
19	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	2.4	35
20	Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency. Nature Communications, 2020, 11, 1112.	5.8	25
21	Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. Journal of Molecular Medicine, 2020, 98, 819-831.	1.7	59
22	The translational landscape of ground state pluripotency. Nature Communications, 2020, 11, 1617.	5.8	18
23	Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes. Cell Reports, 2019, 26, 1059-1069.e6.	2.9	33
24	The circular RNome of primary breast cancer. Genome Research, 2019, 29, 356-366.	2.4	85
25	BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death and Disease, 2019, 10, 338.	2.7	31
26	Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nature Cell Biology, 2019, 21, 568-578.	4.6	55
27	Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation. Nature Communications, 2019, 10, 1749.	5.8	46
28	Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Scientific Reports, 2019, 9, 1469.	1.6	73
29	Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Scientific Reports, 2019, 9, 2772.	1.6	27
30	Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Research, 2019, 47, 11574-11588.	6.5	45
31	Inhibition of Histone Demethylases LSD1 and UTX Regulates ERα Signaling in Breast Cancer. Cancers, 2019, 11, 2027.	1.7	34
32	The SMAD2/3 interactome reveals that TGFÎ ² controls m6A mRNA methylation in pluripotency. Nature, 2018, 555, 256-259.	13.7	283
33	Brd4-independence in ground state pluripotency. Nature Cell Biology, 2018, 20, 513-515.	4.6	0
34	Transcriptional and functional profiling defines human small intestinal macrophage subsets. Journal of Experimental Medicine, 2018, 215, 441-458.	4.2	144
35	BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host and Microbe, 2018, 23, 89-100.e5.	5.1	860
36	RIP1–HAT1–SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clinical Cancer Research, 2018, 24, 2886-2900.	3.2	40

#	Article	IF	CITATIONS
37	Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Research, 2018, 46, 4950-4965.	6.5	32
38	C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation. Leukemia, 2018, 32, 828-836.	3.3	6
39	Multi-omics profiling reveals a distinctive epigenome signature for high-risk acute promyelocytic leukemia. Oncotarget, 2018, 9, 25647-25660.	0.8	13
40	Epigenetic Repression of Androgen Receptor Transcription in Mutation-Negative Androgen Insensitivity Syndrome (AIS Type II). Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4617-4627.	1.8	22
41	Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape. Cell Reports, 2018, 25, 3490-3503.e4.	2.9	41
42	E-cadherin loss induces targetable autocrine activation of growth factor signalling in lobular breast cancer. Scientific Reports, 2018, 8, 15454.	1.6	55
43	Dynamics of Transcription Regulation in Human Bone Marrow Myeloid Differentiation to Mature Blood Neutrophils. Cell Reports, 2018, 24, 2784-2794.	2.9	104
44	The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 868-880.	15.2	157
45	Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells. Nature Communications, 2018, 9, 2384.	5.8	17
46	Mammalian embryo comparison identifies novel pluripotency genes associated with the naÃ ⁻ ve or primed state. Biology Open, 2018, 7, .	0.6	32
47	Dendritic Cells Actively Limit Interleukin-10 Production Under Inflammatory Conditions via DC-SCRIPT and Dual-Specificity Phosphatase 4. Frontiers in Immunology, 2018, 9, 1420.	2.2	16
48	Combined HAT/EZH2 modulation leads to cancer-selective cell death. Oncotarget, 2018, 9, 25630-25646.	0.8	5
49	c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clinical Cancer Research, 2017, 23, 2542-2555.	3.2	105
50	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24
51	A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. Nature Genetics, 2017, 49, 341-348.	9.4	75
52	MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene, 2017, 36, 3346-3356.	2.6	86
53	Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biology, 2017, 18, 18.	3.8	97
54	miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia, 2017, 31, 2315-2325.	3.3	66

#	Article	IF	CITATIONS
55	Tracking the embryonic stem cell transition from ground state pluripotency. Development (Cambridge), 2017, 144, 1221-1234.	1.2	226
56	The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nature Communications, 2017, 8, 14418.	5.8	48
57	Uric acid priming in human monocytes is driven by the AKT–PRAS40 autophagy pathway. Proceedings of the United States of America, 2017, 114, 5485-5490.	3.3	114
58	HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nature Medicine, 2017, 23, 517-525.	15.2	769
59	Vitamin C and l-Proline Antagonistic Effects Capture Alternative States in the Pluripotency Continuum. Stem Cell Reports, 2017, 8, 1-10.	2.3	56
60	Distinct Cell-Cycle Control in Two Different States of Mouse Pluripotency. Cell Stem Cell, 2017, 21, 449-455.e4.	5.2	61
61	Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses. Scientific Reports, 2017, 7, 11725.	1.6	11
62	Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nature Communications, 2017, 8, 393.	5.8	51
63	Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies. Current Opinion in Genetics and Development, 2017, 46, 114-122.	1.5	13
64	The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics, 2017, 18, 643-658.	7.7	414
65	Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nature Communications, 2017, 8, 16058.	5.8	50
66	Digitalis-like Compounds Facilitate Non-Medullary Thyroid Cancer Redifferentiation through Intracellular Ca2+, FOS, and Autophagy-Dependent Pathways. Molecular Cancer Therapeutics, 2017, 16, 169-181.	1.9	19
67	I Remember You: Epigenetic Priming in Epithelial Stem Cells. Immunity, 2017, 47, 1019-1021.	6.6	12
68	Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus. Scientific Reports, 2017, 7, 18073.	1.6	11
69	An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Research, 2017, 45, e174-e174.	6.5	7
70	PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. Epigenomes, 2017, 1, 22.	0.8	0
71	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
72	p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genetics, 2017, 13, e1006828.	1.5	34

#	Article	IF	CITATIONS
73	Environmentâ€induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Molecular Systems Biology, 2016, 12, 861.	3.2	97
74	Genome-wide epigenomic profiling for biomarker discovery. Clinical Epigenetics, 2016, 8, 122.	1.8	67
75	Recruitment of the Mammalian Histone-modifying EMSY Complex to Target Genes Is Regulated by ZNF131. Journal of Biological Chemistry, 2016, 291, 7313-7324.	1.6	35
76	GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biology, 2016, 17, 36.	3.8	121
77	Dynamic chromatin organization: Role in development and disease. International Journal of Biochemistry and Cell Biology, 2016, 76, 119-122.	1.2	4
78	Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352, aaf1098.	6.0	1,809
79	Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 2016, 534, 47-54.	13.7	1,760
80	ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. Cell Reports, 2016, 17, 783-798.	2.9	100
81	Epigenetic memory: A macrophage perspective. Seminars in Immunology, 2016, 28, 359-367.	2.7	49
82	MEIS2 Is an Oncogenic Partner in AML1-ETO-Positive AML. Cell Reports, 2016, 16, 498-507.	2.9	32
83	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	7.2	584
84	eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Reports, 2016, 17, 2137-2150.	2.9	102
85	Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity, 2016, 45, 1135-1147.	6.6	510
86	Information recovery from low coverage whole-genome bisulfite sequencing. Nature Communications, 2016, 7, 11306.	5.8	33
87	Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell, 2016, 30, 806-821.	7.7	103
88	β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 2016, 167, 1354-1368.e14.	13.5	467
89	Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell, 2016, 167, 1369-1384.e19.	13.5	863
90	The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell, 2016, 167, 1415-1429.e19.	13.5	1,052

#	Article	IF	CITATIONS
91	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
92	The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Reports, 2016, 17, 2087-2100.	2.9	60
93	Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Reports, 2016, 17, 2101-2111.	2.9	54
94	DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell, 2016, 19, 808-822.	5.2	216
95	Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell, 2016, 167, 1398-1414.e24.	13.5	573
96	Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12360-12367.	3.3	54
97	The topography of mutational processes in breast cancer genomes. Nature Communications, 2016, 7, 11383.	5.8	235
98	Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nature Communications, 2016, 7, 12910.	5.8	119
99	Saturation analysis for whole-genome bisulfite sequencing data. Nature Biotechnology, 2016, 34, 691-693.	9.4	26
100	Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular Cell, 2016, 62, 848-861.	4.5	189
101	Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 2016, 14, 332-346.	2.9	126
102	The oncofusion protein FUS–ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia. Oncogene, 2016, 35, 1965-1976.	2.6	39
103	Aberrant Expression of the SOX11 Oncogene in Mantle Cell Lymphoma Is Associated with Activation and De Novo 3D Looping of a Distant Enhancer Element. Blood, 2016, 128, 459-459.	0.6	0
104	Whole-Genome Analysis of the Chromatin Structure in Multiple Myeloma. Blood, 2016, 128, 118-118.	0.6	0
105	Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Reports, 2015, 16, 863-878.	2.0	134
106	Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nature Genetics, 2015, 47, 746-756.	9.4	278
107	Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biology, 2015, 16, 264.	3.8	48
108	Dynamic Reorganization of Extremely Long-Range Promoter-Promoter Interactions between Two States of Pluripotency. Cell Stem Cell, 2015, 17, 748-757.	5.2	179

#	Article	IF	CITATIONS
109	Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology, 2015, 16, 149.	3.8	104
110	Roadmap for regulation. Nature, 2015, 518, 314-316.	13.7	190
111	A Quantitative Proteomics Tool To Identify DNA–Protein Interactions in Primary Cells or Blood. Journal of Proteome Research, 2015, 14, 1315-1329.	1.8	32
112	A Me6Age for pluripotency. Science, 2015, 347, 614-615.	6.0	6
113	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	2.4	118
114	Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 2015, 526, 519-524.	13.7	749
115	DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nature Genetics, 2015, 47, 1316-1325.	9.4	119
116	Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13115-13120.	3.3	75
117	MINCR is a MYC-induced IncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5261-70.	3.3	91
118	DNA Methylation of the Aryl Hydrocarbon Receptor Repressor Associations With Cigarette Smoking and Subclinical Atherosclerosis. Circulation: Cardiovascular Genetics, 2015, 8, 707-716.	5.1	107
119	Genome-Wide Binding of MBD2 Reveals Strong Preference for Highly Methylated Loci. PLoS ONE, 2014, 9, e99603.	1.1	44
120	Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 2014, 10, e1003598.	1.5	24
121	MBD2 and MBD3: elusive functions and mechanisms. Frontiers in Genetics, 2014, 5, 428.	1.1	53
122	Context-Selective Death of Acute Myeloid Leukemia Cells Triggered by the Novel Hybrid Retinoid-HDAC Inhibitor MC2392. Cancer Research, 2014, 74, 2328-2339.	0.4	33
123	A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biology, 2014, 12, 86.	1.7	251
124	Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development (Cambridge), 2014, 141, 526-537.	1.2	225
125	Transcription regulation and chromatin structure in the pluripotent ground state. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 129-137.	0.9	33
126	Genomics meets proteomics: identifying the culprits in disease. Human Genetics, 2014, 133, 689-700.	1.8	18

#	Article	IF	CITATIONS
127	Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, 345, 1251086.	6.0	1,338
128	Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a. Cell Reports, 2014, 8, 743-753.	2.9	66
129	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24
130	Transcriptional diversity during lineage commitment of human blood progenitors. Science, 2014, 345, 1251033.	6.0	253
131	Dual Promoter Usage as Regulatory Mechanism of let-7c Expression in Leukemic and Solid Tumors. Molecular Cancer Research, 2014, 12, 878-889.	1.5	18
132	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	6.0	1,517
133	A Polymorphic Enhancer near GREM1 Influences Bowel Cancer Risk through Differential CDX2 and TCF7L2 Binding. Cell Reports, 2014, 8, 983-990.	2.9	45
134	Analysis of Chromatin–Nuclear Receptor Interactions by Laser-Chromatin Immunoprecipitation. Methods in Molecular Biology, 2014, 1204, 25-34.	0.4	2
135	Characterization of the DNA Methylome during Human B-Cell Differentiation. Blood, 2014, 124, 4346-4346.	0.6	0
136	Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 13, 360-369.	5.2	424
137	Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neuroscience, 2013, 16, 1453-1460.	7.1	283
138	Dnmt3L Antagonizes DNA Methylation at Bivalent Promoters and Favors DNA Methylation at Gene Bodies in ESCs. Cell, 2013, 155, 121-134.	13.5	153
139	The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Reports, 2013, 4, 642-648.	2.9	42
140	SMIM1 underlies the Vel blood group and influences red blood cell traits. Nature Genetics, 2013, 45, 542-545.	9.4	96
141	De Novo Mutations in the Genome Organizer CTCF Cause Intellectual Disability. American Journal of Human Genetics, 2013, 93, 124-131.	2.6	151
142	The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biology Open, 2013, 2, 1070-1077.	0.6	17
143	Dynamic binding of RBPJ is determined by Notch signaling status. Genes and Development, 2013, 27, 1059-1071.	2.7	218
144	Integrative Analysis of Deep Sequencing Data Identifies Estrogen Receptor Early Response Genes and Links ATAD3B to Poor Survival in Breast Cancer. PLoS Computational Biology, 2013, 9, e1003100.	1.5	11

#	Article	IF	CITATIONS
145	Nontypeable Haemophilus influenzae Carbonic Anhydrase Is Important for Environmental and Intracellular Survival. Journal of Bacteriology, 2013, 195, 2737-2746.	1.0	29
146	Streptococcus pneumoniae Folate Biosynthesis Responds to Environmental CO 2 Levels. Journal of Bacteriology, 2013, 195, 1573-1582.	1.0	31
147	<scp>H</scp> 2 <scp>A</scp> . <scp>Z</scp> / <scp>H</scp> 2 <scp>B</scp> . <scp>Z</scp> doubleâ€variant nucleosomes inhabit the <scp>AT</scp> â€rich promoter regions of the <scp><i>P</i></scp> <i>lasmodium falciparum</i> genome. Molecular Microbiology, 2013, 87, 1061-1073.	1.2	66
148	BLUEPRINT: mapping human blood cell epigenomes. Haematologica, 2013, 98, 1487-1489.	1.7	189
149	Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics, 2012, 7, 1355-1367.	1.3	67
150	Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites. Molecular and Cellular Biology, 2012, 32, 852-867.	1.1	205
151	Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood, 2012, 120, 3058-3068.	0.6	60
152	ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood, 2012, 120, 4038-4048.	0.6	98
153	Transcriptome Analysis Using RNA-Seq. Methods in Molecular Biology, 2012, 923, 221-239.	0.4	35
154	Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host and Microbe, 2012, 12, 223-232.	5.1	926
155	Uncovering Common Principles in Protein Export of Malaria Parasites. Cell Host and Microbe, 2012, 12, 717-729.	5.1	115
156	Placing the Plasmodium falciparum epigenome on the map. Trends in Parasitology, 2012, 28, 486-495.	1.5	35
157	Indole-Derived Psammaplin A Analogues as Epigenetic Modulators with Multiple Inhibitory Activities. Journal of Medicinal Chemistry, 2012, 55, 9467-9491.	2.9	48
158	The Transcriptional and Epigenomic Foundations of Ground State Pluripotency. Cell, 2012, 149, 590-604.	13.5	774
159	Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17537-17542.	3.3	1,294
160	Comparative Genomics of Two Independently Enriched "Candidatus Kuenenia Stuttgartiensis― Anammox Bacteria. Frontiers in Microbiology, 2012, 3, 307.	1.5	51
161	SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes. PLoS ONE, 2012, 7, e33834.	1.1	102
162	The Human EKC/KEOPS Complex Is Recruited to Cullin2 Ubiquitin Ligases by the Human Tumour Antigen PRAME. PLoS ONE, 2012, 7, e42822.	1.1	41

#	Article	IF	CITATIONS
163	Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Research, 2012, 22, 1128-1138.	2.4	344
164	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	9.4	323
165	<i>Plasmodium falciparum</i> centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cellular Microbiology, 2012, 14, 1391-1401.	1.1	74
166	CATCHprofiles: Clustering and Alignment Tool for ChIP Profiles. PLoS ONE, 2012, 7, e28272.	1.1	10
167	FACIL: Fast and Accurate Genetic Code Inference and Logo. Bioinformatics, 2011, 27, 1929-1933.	1.8	42
168	Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479, 127-130.	13.7	707
169	An RNA-Seq Strategy to Detect the Complete Coding and Non-Coding Transcriptome Including Full-Length Imprinted Macro ncRNAs. PLoS ONE, 2011, 6, e27288.	1.1	97
170	Linear amplification for deep sequencing. Nature Protocols, 2011, 6, 1026-1036.	5.5	72
171	<i>>De novo</i> transcriptome characterization and development of genomic tools for <i>Scabiosa columbaria</i> L. using nextâ€generation sequencing techniques. Molecular Ecology Resources, 2011, 11, 662-674.	2.2	44
172	RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity. PLoS ONE, 2011, 6, e19470.	1.1	109
173	5â€Hydroxymethylcytosine: a new kid on the epigenetic block?. Molecular Systems Biology, 2011, 7, 562.	3.2	69
174	Experimentally controlled downregulation of the histone chaperone FACT in <i>Plasmodium berghei</i> reveals that it is critical to male gamete fertility. Cellular Microbiology, 2011, 13, 1956-1974.	1.1	43
175	Genome-wide functions of PML–RARα in acute promyelocytic leukaemia. British Journal of Cancer, 2011, 104, 554-558.	2.9	54
176	A model for the topology of active ribosomal RNA genes. EMBO Reports, 2011, 12, 231-237.	2.0	49
177	Towards cracking the epigenetic code using a combination of highâ€throughput epigenomics and quantitative mass spectrometryâ€based proteomics. BioEssays, 2011, 33, 547-551.	1.2	17
178	Crosstalk between c-Jun and TAp73α/β contributes to the apoptosis–survival balance. Nucleic Acids Research, 2011, 39, 6069-6085.	6.5	49
179	Death Receptor Pathway Activation and Increase of ROS Production by the Triple Epigenetic Inhibitor UVI5008. Molecular Cancer Therapeutics, 2011, 10, 2394-2404.	1.9	49
180	Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Research, 2011, 21, 1404-1416.	2.4	184

#	Article	IF	CITATIONS
181	The Decade of the Epigenomes?. Genes and Cancer, 2011, 2, 680-687.	0.6	16
182	A Genome-wide Chromatin-associated Nuclear Peroxiredoxin from the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2011, 286, 11746-11755.	1.6	46
183	Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Research, 2011, 21, 1313-1327.	2.4	92
184	The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO Journal, 2011, 30, 3786-3798.	3.5	59
185	Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a. PLoS Biology, 2011, 9, e1000569.	2.6	185
186	Role of p53 Serine 46 in p53 Target Gene Regulation. PLoS ONE, 2011, 6, e17574.	1.1	154
187	A SILAC-Based Screen for Methyl-CpG Binding Proteins Identifies RBP-J as a DNA Methylation and Sequence-Specific Binding Protein. PLoS ONE, 2011, 6, e25884.	1.1	49
188	PML-RARα/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell, 2010, 17, 173-185.	7.7	276
189	The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Letters, 2010, 584, 2662-2669.	1.3	88
190	Evidence for a dynamic role of the linker histone variant H1x during retinoic acidâ€induced differentiation of NT2 cells. FEBS Letters, 2010, 584, 4661-4664.	1.3	14
191	Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO Journal, 2010, 29, 2147-2160.	3.5	497
192	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
193	Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature Biotechnology, 2010, 28, 1106-1114.	9.4	534
194	Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility. PLoS Pathogens, 2010, 6, e1000853.	2.1	198
195	A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology. PLoS Pathogens, 2010, 6, e1000784.	2.1	150
196	Genome-Wide Profiling of p63 DNA–Binding Sites Identifies an Element that Regulates Gene Expression during Limb Development in the 7q21 SHFM1 Locus. PLoS Genetics, 2010, 6, e1001065.	1.5	169
197	H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3. PLoS Pathogens, 2010, 6, e1001223.	2.1	201
198	Malaria: Could its unusual epigenome be the weak spot?. International Journal of Biochemistry and Cell Biology, 2010, 42, 781-784.	1.2	22

#	Article	IF	CITATIONS
199	Insightful Tales from Single Embryonic Cells. Cell Stem Cell, 2010, 6, 397-398.	5.2	7
200	Whole-genome DNA methylation profiling using MethylCap-seq. Methods, 2010, 52, 232-236.	1.9	243
201	CDK2AP1/DOC-1 is a bona fide subunit of the Mi-2/NuRD complex. Molecular BioSystems, 2010, 6, 1700.	2.9	54
202	ChIP-Chip Designs to Interrogate the Genome of Xenopus Embryos for Transcription Factor Binding and Epigenetic Regulation. PLoS ONE, 2010, 5, e8820.	1.1	10
203	Peroxisome Proliferator-activated Receptor Î ³ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81). Journal of Biological Chemistry, 2009, 284, 26385-26393.	1.6	76
204	Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9655-9660.	3.3	195
205	Genomic actions of estrogen receptor α: what are the targets and how are they regulated?. Endocrine-Related Cancer, 2009, 16, 1073-1089.	1.6	128
206	Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors. PLoS Pathogens, 2009, 5, e1000569.	2.1	243
207	Sequence requirements for the export of the <i>Plasmodium falciparum</i> Maurer's clefts protein REX2. Molecular Microbiology, 2009, 71, 1003-1017.	1.2	76
208	ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO Journal, 2009, 28, 1418-1428.	3.5	377
209	An oestrogen-receptor-α-bound human chromatin interactome. Nature, 2009, 462, 58-64.	13.7	1,537
210	Global Histone Analysis by Mass Spectrometry Reveals a High Content of Acetylated Lysine Residues in the Malaria Parasite <i>Plasmodium falciparum</i> . Journal of Proteome Research, 2009, 8, 3439-3450.	1.8	140
211	A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos. Developmental Cell, 2009, 17, 425-434.	3.1	206
212	Time for Epigenetics. International Journal of Biochemistry and Cell Biology, 2009, 41, 2-3.	1.2	17
213	High-resolution analysis of epigenetic changes associated with X inactivation. Genome Research, 2009, 19, 1361-1373.	2.4	122
214	A TFTC/STAGA Module Mediates Histone H2A and H2B Deubiquitination, Coactivates Nuclear Receptors, and Counteracts Heterochromatin Silencing. Molecular Cell, 2008, 29, 92-101.	4.5	331
215	Application of Active and Kinase-Deficient Kinome Collection for Identification of Kinases Regulating Hedgehog Signaling. Cell, 2008, 133, 537-548.	13.5	171
216	Characterization of a Conserved Rhoptry-Associated Leucine Zipper-Like Protein in the Malaria Parasite <i>Plasmodium falciparum</i> . Infection and Immunity, 2008, 76, 879-887.	1.0	32

#	ARTICLE	IF	CITATIONS
217	Correctly folded Pfs48/45 protein of <i>Plasmodium falciparum</i> elicits malaria transmission-blocking immunity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4301-4305.	3.3	138
218	Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells. Molecular and Cellular Biology, 2008, 28, 2732-2744.	1.1	208
219	Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Research, 2008, 36, 3639-3654.	6.5	199
220	Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity. PLoS Pathogens, 2008, 4, e1000195.	2.1	191
221	Genome-wide profiling of PPARÎ ³ :RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes and Development, 2008, 22, 2953-2967.	2.7	475
222	Epitope Analysis of the Malaria Surface Antigen Pfs48/45 Identifies a Subdomain That Elicits Transmission Blocking Antibodies. Journal of Biological Chemistry, 2007, 282, 17148-17156.	1.6	70
223	The new frontier in cancer research: Deciphering cancer epigenetics. International Journal of Biochemistry and Cell Biology, 2007, 39, 1450-1461.	1.2	17
224	Identification of novel functional TBP-binding sites and general factor repertoires. EMBO Journal, 2007, 26, 944-954.	3.5	97
225	Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO Journal, 2007, 26, 4078-4088.	3.5	236
226	A facelift for the general transcription factor TFIIA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 429-436.	2.4	38
227	DNA methylation immediately adjacent to active histone marking does not silence transcription. Nucleic Acids Research, 2007, 35, 801-811.	6.5	24
228	Fibril Formation by Triblock Copolymers of Silklike β-Sheet Polypeptides and Poly(ethylene glycol). Macromolecules, 2006, 39, 2989-2997.	2.2	66
229	Histone modification patterns associated with the human X chromosome. EMBO Reports, 2006, 7, 628-634.	2.0	94
230	Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners. Nucleic Acids Research, 2006, 34, 3929-3937.	6.5	37
231	Uncleaved TFIIA Is a Substrate for Taspase 1 and Active in Transcription. Molecular and Cellular Biology, 2006, 26, 2728-2735.	1.1	67
232	Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery. Molecular and Cellular Biology, 2006, 26, 5698-5714.	1.1	74
233	A Feed-Forward Repression Mechanism Anchors the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressors on Chromatin. Molecular and Cellular Biology, 2006, 26, 5226-5236.	1.1	26
234	MBD2/NuRD and MBD3/NuRD, Two Distinct Complexes with Different Biochemical and Functional Properties. Molecular and Cellular Biology, 2006, 26, 843-851.	1.1	290

#	Article	IF	CITATIONS
235	Targeted discovery tools: proteomics and chromatin immunoprecipitation-on-chip. BJU International, 2005, 96, 16-22.	1.3	8
236	Controlled Assembly of Macromolecular ?-Sheet Fibrils. Angewandte Chemie - International Edition, 2005, 44, 1968-1971.	7.2	157
237	Characterization of Lysine 56 of Histone H3 as an Acetylation Site in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 25949-25952.	1.6	105
238	In Vitro Targeting Reveals Intrinsic Histone Tail Specificity of the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressor Complexes. Molecular and Cellular Biology, 2004, 24, 2364-2372.	1.1	43
239	Molecular Determinants of the Interaction of Mad with the PAH2 Domain of mSin3. Journal of Biological Chemistry, 2004, 279, 25823-25829.	1.6	11
240	Cleavage and proteasome-mediated degradation of the basal transcription factor TFIIA. EMBO Journal, 2004, 23, 3083-3091.	3.5	23
241	An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes. Biological Procedures Online, 2004, 6, 157-162.	1.4	3
242	p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC. EMBO Journal, 2003, 22, 4501-4511.	3.5	22
243	The Gene Encoding the Acyl-CoA-binding Protein Is Activated by Peroxisome Proliferator-activated Receptor Î ³ through an Intronic Response Element Functionally Conserved between Humans and Rodents. Journal of Biological Chemistry, 2002, 277, 26821-26830.	1.6	94
244	E2F transcriptional repressor complexes are critical downstream targets of p19ARF/p53-induced proliferative arrest. Cancer Cell, 2002, 2, 55-65.	7.7	118
245	Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, 2002, 419, 537-542.	13.7	596
246	In vivorepression of an erythroid-specific gene by distinct corepressor complexes. EMBO Journal, 2002, 21, 1389-1397.	3.5	38
247	Sequence-specific assignment of the PAH2 domain of Sin3B free and bound to Mad1. Journal of Biomolecular NMR, 2001, 19, 377-378.	1.6	4
248	The v-ErbA oncoprotein quenches the activity of an erythroid-specific enhancer. Oncogene, 2001, 20, 775-787.	2.6	4
249	Avian erythroleukemia: a model for corepressor function in cancer. Oncogene, 2001, 20, 3100-3109.	2.6	22
250	Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells. Nucleic Acids Research, 2001, 29, 3424-3432.	6.5	6
251	The Mad1-Sin3B interaction involves a novel helical fold. Nature Structural Biology, 2000, 7, 1100-1104.	9.7	52
252	Differential binding and transcriptional behaviour of two highly related orphan receptors, RORα4 and RORβ1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1494, 236-241.	2.4	9

#	Article	IF	CITATIONS
253	Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast. Vaccine, 2000, 18, 1402-1411.	1.7	41
254	TAC, a TBP-sans-TAFs Complex Containing the Unprocessed TFIIAαβ Precursor and the TFIIAγ Subunit. Molecular Cell, 2000, 6, 527-537.	4.5	43
255	Leukemia: the sophisticated subversion of hematopoiesis by nuclear receptor oncoproteins. Biochimica Et Biophysica Acta: Reviews on Cancer, 1999, 1423, F15-F33.	3.3	7
256	A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 1999, 97, 161-163.	13.5	1,083
257	Isolation and Functional Characterization of Two Distinct Sexual-Stage-Specific Promoters of the Human Malaria Parasite <i>Plasmodium falciparum</i> . Molecular and Cellular Biology, 1999, 19, 967-978.	1.1	89
258	Leukemic transformation by the v-ErbA oncoprotein entails constitutive binding to and repression of an erythroid enhancer invivo. EMBO Journal, 1998, 17, 7382-7394.	3.5	30
259	UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO Journal, 1998, 17, 2019-2032.	3.5	167
260	Requirement of cofactors for RXR/RAR-mediated transcriptional activation in vitro. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 229-234.	2.4	5
261	The promoter context is a decisive factor in establishing selective responsiveness to nuclear class II receptors. EMBO Journal, 1997, 16, 2861-2873.	3.5	25
262	Monoclonal Antibodies Directed against the Amino-Terminal Domain of Human TBP Cross-React with TBP from Other Species. Hybridoma, 1996, 15, 55-68.	0.9	35
263	Retinoid-dependent in vitro transcription. Methods in Enzymology, 1996, 274, 149-161.	0.4	3
264	Low Affinity Binding of Interleukin-1β and Intracellular Signaling via NF-κB Identify Fit-1 as a Distant Member of the Interleukin-1 Receptor Family. Journal of Biological Chemistry, 1995, 270, 17645-17648.	1.6	39
265	9-cis retinoic acid signaling: changing partners causes some excitement Genes and Development, 1995, 9, 1811-1816.	2.7	136
266	Retinoic Acid Receptors. , 1995, , 187-242.		15
267	Human androgen receptor expressed in HeLa cells activates transcriptionin vitro. Nucleic Acids Research, 1994, 22, 1161-1166.	6.5	28
268	Retinoid-dependent in vitro transcription mediated by the RXR/RAR heterodimer Genes and Development, 1994, 8, 3068-3079.	2.7	59
269	Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Research, 1994, 22, 541-542.	6.5	121
270	Yeast TBP can Replace its Human Homologue in the RNA Polymerase I-specific Multisubunit Factor SL1. Journal of Molecular Biology, 1994, 243, 840-845.	2.0	10

#	Article	IF	CITATIONS
271	Mechanisms of transactivation by retinoic acid receptors. BioEssays, 1993, 15, 309-315.	1.2	162
272	Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature, 1993, 365, 562-566.	13.7	65
273	Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature, 1993, 362, 471-475.	13.7	512
274	Affinity purification of histidine-tagged proteins. Molecular Biology Reports, 1993, 18, 223-230.	1.0	215
275	Cloning and expression of a mouse cDNA encoding p59, an immunophilin that associates with the glucocorticoid receptor. Gene, 1993, 132, 267-271.	1.0	23
276	The glucocorticoid receptor hormone binding domain mediates transcriptional activationin vitroin the absence of ligand. Nucleic Acids Research, 1993, 21, 2673-2681.	6.5	37
277	Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to E1A. Cell, 1992, 69, 401-412.	13.5	132
278	Promoter melting by a stage-specific vaccinia virus transcription factor is independent of the presence of RNA polymerase. Cell, 1991, 65, 105-113.	13.5	62
279	Targeting of frog prodermorphin to the regulated secretory pathway by fusion to proenkephalin Journal of Cell Biology, 1991, 114, 1125-1133.	2.3	28
280	Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8972-8976.	3.3	456
281	v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII Genes and Development, 1991, 5, 2033-2047.	2.7	83
282	Identification of a retinoic acid responsive element in the retinoic acid receptor & beta;gene. Nature, 1990, 343, 177-180.	13.7	1,044
283	Expression and Processing of the Activin-A/Erythroid Differentiation Factor Precursor: A Member of the Transforming Growth Factor-β Superfamily. Molecular Endocrinology, 1990, 4, 1153-1165.	3.7	36
284	A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell, 1990, 61, 1225-1236.	13.5	181
285	Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature, 1989, 340, 242-244.	13.7	402
286	Cis-acting sequences affecting the length of the poly(A) head of vaccinia virus late transcripts. Nucleic Acids Research, 1988, 16, 3141-3156.	6.5	54
287	High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Research, 1988, 16, 2431-2444.	6.5	116
288	Vaccinia virus late transcripts generated in vitro have a poly(A) head EMBO Journal, 1988, 7, 1183-1190.	3.5	80

#	Article	IF	CITATIONS
289	Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell, 1987, 50, 163-169.	13.5	164
290	Biochemical complementation with RNA in the Xenopus oocyte: A small rna is required for the generation of 3′ histone mRNA termini. Cell, 1983, 34, 823-828.	13.5	184
291	Bioassay for components regulating eukaryotic gene expression: a chromosomal factor involved in the generation of histone mRNA 3' termini Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6201-6204.	3.3	60
292	An αâ€Amanitinâ€Resistant DNAâ€Dependent RNA Polymerise II from the Fungus <i>Aspergillus nidulans</i> . FEBS Journal, 1981, 117, 121-129.	0.2	22
293	RNA Polymerase from the Fungus Aspergillus nidulans. Large-Scale Purification of DNA-Dependent RNA Polymerase I (or A). FEBS Journal, 1979, 98, 107-119.	0.2	13
294	Depletion in nuclei of proteins associated with hnRNA, as a result of inhibition of RNA synthesis. Experimental Cell Research, 1978, 112, 335-344.	1.2	20