Chun-Hsien Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242601/publications.pdf

Version: 2024-02-01

118 papers 6,006 citations

40 h-index 74 g-index

128 all docs

128 docs citations

times ranked

128

6655 citing authors

#	Article	IF	CITATIONS
1	Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions <i>R</i> , <i>R</i> ,Ci>R,Ci <r< i="">,Ci<r< ti="">,Ci<r< ti="">,</r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<></r<>	3.6	8
2	Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. Nature Materials, 2021, 20, 658-664.	13.3	47
3	Ligand-Field-Modulated Molecular Junctions: On Covalently Bonded Ethynyl–Electrode Interfaces. Journal of Physical Chemistry C, 2020, 124, 17441-17449.	1.5	4
4	Effect of the Chemical Potentials of Electrodes on Charge Transport across Molecular Junctions. Journal of Physical Chemistry C, 2019, 123, 22009-22017.	1.5	8
5	Revisit of trinickel metal string complexes [Ni 3 L 4 X 2] (L = dipyridylamido, diazaphenoxazine; X = NCS,) Tj ETQq	$1_{0.8}^{1}$ 0.7843	314 rgBT <mark> </mark> 0
6	Stereospecific Synthesis of Poly(methylene-E-vinylene) by Ring Opening Metathesis Polymerization of Substituted Cyclopropene Using Grubbs Catalysts. Macromolecules, 2019, 52, 7749-7755.	2.2	12
7	The Cyclic Hydrogenâ€Bonded 6â€Azaindole Trimer and its Prominent Excitedâ€State Tripleâ€Protonâ€Transfer Reaction. Angewandte Chemie - International Edition, 2018, 57, 5020-5024.	7.2	11
8	Template-Assisted Proximity for Oligomerization of Fullerenes. Langmuir, 2018, 34, 5416-5421.	1.6	10
9	The Cyclic Hydrogenâ€Bonded 6â€Azaindole Trimer and its Prominent Excitedâ€State Tripleâ€Protonâ€Transfer Reaction. Angewandte Chemie, 2018, 130, 5114-5118.	1.6	3
10	Pentanuclear Heterometallic String Complexes with Highâ€Bondâ€order Units [Ni ₂ ³⁺ â^'Mo ₂ ⁴⁺ â^'Ni ²⁺ (bna) ₄ X <su(x = cl, 122-132.<="" 2018,="" 65,="" chemical="" chinese="" journal="" ncs).="" of="" society,="" td="" the=""><td>ub:x2<td>)9]³⁺⁴</td></td></su(x = cl,>	u b:x 2 <td>)9]³⁺⁴</td>) 9] ³⁺⁴
11	Superstructure manipulation and electronic measurement of monolayers comprising discotic liquid crystals with intrinsic dipole moment using STM/STS. Chemical Communications, 2018, 54, 8048-8051.	2.2	15
12	3D and 2D supramolecular assemblies and thermotropic behaviour of a carbo-benzenic mesogen. Chemical Communications, 2017, 53, 5902-5905.	2.2	10
13	A case report of painless type A aortic dissection with intermittent convulsive syncope as initial presentation. Medicine (United States), 2017, 96, e6762.	0.4	7
14	A ligand design with a modified naphthyridylamide for achieving the longest EMACs: the 1st single-molecule conductance of an undeca-nickel metal string. Chemical Communications, 2017, 53, 4673-4676.	2.2	38
15	Reaction: New Insights into Molecular Electronics. CheM, 2017, 3, 378-379.	5.8	17
16	Nonhelical heterometallic [Mo $<$ sub $>2<$ /sub $>M(npo)<$ sub $>4<$ /sub $>(NCS)<$ sub $>2<$ /sub $>$] string complexes (M = Fe, Co, Ni) with high single-molecule conductance. Chemical Communications, 2017, 53, 8886-8889.	2.2	22
17	Determination of the Valence State of Diruthenium Moiety Using Redox Reactions and Surface-Enhanced Raman Scattering: Application in Heterometal Extended Metal-Atom Chain Diruthenium Nickel Complexes. Journal of Physical Chemistry C, 2016, 120, 20297-20302.	1.5	10
18	Asymmetric tetranuclear nickel chains with unidirectionally ordered 2-(α-(5-phenyl)pyridylamino)-1,8-naphthyridine ligands. Dalton Transactions, 2016, 45, 17281-17289.	1.6	8

#	Article	IF	Citations
19	Stability of Guest-Incorporated 2D Molecular Networks. Journal of Physical Chemistry C, 2016, 120, 25505-25510.	1.5	19
20	From Homonuclear Metal String Complexes to Heteronuclear Metal String Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 2498-2498.	1.0	0
21	Tuning molecule-substrate coupling <i>via</i> deposition of metal adatoms. Journal of Chemical Physics, 2015, 143, 184704.	1.2	1
22	Energyâ€Level Alignment for Singleâ€Molecule Conductance of Extended Metalâ€Atom Chains. Angewandte Chemie - International Edition, 2015, 54, 15734-15738.	7.2	51
23	Force Spectroscopy of Metal–Crown Ether Multivalency: Effect of Local Environments on Energy Landscape and Sensing Kinetics. Angewandte Chemie - International Edition, 2015, 54, 9213-9217.	7.2	7
24	From Homonuclear Metal String Complexes to Heteronuclear Metal String Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 2510-2523.	1.0	84
25	Fineâ€Tuning of Linear Hexaâ€Cobalt and Defective Pentaâ€ÂCobalt Metalâ€String Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2258-2265.	0.6	10
26	Biaxial aromatics with face-on/edge-on stacking adaptability: an STM/STS study of 1D nanowires assembled via rotatable ethynyls. Chemical Communications, 2014, 50, 14093-14096.	2.2	14
27	Transitions between Electron Transporting Mechanisms in Molecular Junctions and Transistors. Journal of the Chinese Chemical Society, 2014, 61, 101-114.	0.8	9
28	On the Size Evolution of Monolayerâ€Protected Gold Clusters during Ligand Placeâ€Exchange Reactions: The Effect of Solvents. Chemistry - an Asian Journal, 2014, 9, 844-851.	1.7	4
29	A magnetic and conductive study on a stable defective extended cobalt atom chain. Dalton Transactions, 2014, 43, 6229-6235.	1.6	16
30	Quantification signalling via transition of solution inhomogeneity: determination of iron content in human serum by the naked eye. Analytical Methods, 2014, 6, 7204-7211.	1.3	1
31	Conductance of Tailored Molecular Segments: A Rudimentary Assessment by Landauer Formulation. Journal of the American Chemical Society, 2014, 136, 1832-1841.	6.6	41
32	The First Heteropentanuclear Extended Metalâ€Atom Chain: [Ni ⁺ Ru ₂ ⁵⁺ Ni ²⁺ Ni ²⁺ (tripyridyldiamido Chemistry - A European Journal, 2014, 20, 4526-4531.) _{4<}	/subo (NCS) <s< td=""></s<>
33	Well-Defined Condensation Polymers with Narrow Polydispersity via Unsymmetrical Ladderphanes by Sequential Polymerization. Macromolecules, 2013, 46, 6712-6722.	2.2	22
34	A novel triruthenium metal string complex with naphthylridylamide ligand: Synthesis, structure, magnetism, and molecular conductance. Inorganic Chemistry Communication, 2013, 38, 152-155.	1.8	14
35	Synthesis, Structure, Magnetism, and Single Molecular Conductance of Linear Trinickel String Complexes with Sulfurâ€Containing Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 263-268.	1.0	12
36	Ruthenium-Catalyzed Cascade Metathetical Cyclopolymerization of Bisnorbornenes with Flexible Linkers. Macromolecules, 2013, 46, 656-663.	2.2	17

#	Article	IF	CITATIONS
37	Tactileâ€Feedback Stabilized Molecular Junctions for the Measurement of Molecular Conductance. Angewandte Chemie - International Edition, 2013, 52, 2449-2453.	7.2	20
38	Double stranded polymeric ladderphanes with 16-ï€-electron antiaromatic metallocycle linkers. Organic and Biomolecular Chemistry, 2012, 10, 5948.	1.5	17
39	Electrical pulse triggered reversible assembly of molecular adlayers. Chemical Communications, 2012, 48, 11748.	2.2	21
40	Polynorbornene-Based Double-Stranded Ladderphanes with Cubane, Cuneane, Tricyclooctadiene, and Cyclooctatetraene Linkers. Macromolecules, 2012, 45, 2662-2667.	2.2	31
41	New trinuclear metal string complexes containing rigid Hdzp ligands: synthesis, structure, magnetism and DFT calculation (Hdzp = 1,9-diazaphenoxazine). Dalton Transactions, 2012, 41, 3166.	1.6	16
42	Fine tuning of pentachromium(<scp>ii</scp>) metal string complexes through elaborate design of ligand. New Journal of Chemistry, 2012, 36, 632-637.	1.4	13
43	Template-Assisted Assembly: Scanning Tunneling Microscopy Study of Solvent-Dependent Adlattices of Alkyl-Derivatized Tetrathiafulvalene. Langmuir, 2012, 28, 382-388.	1.6	22
44	Cis, Isotactic Selective ROMP of Norbornenes Fused with $\langle i \rangle N \langle i \rangle$ -Arylpyrrolidines. Double Stranded Polynorbornene-Based Ladderphanes with $\langle i \rangle Z \langle i \rangle$ -Double Bonds. Macromolecules, 2012, 45, 8166-8171.	2.2	29
45	Star-Shaped Oligothiophenes Containing an Isotruxene Core: Synthesis, Electronic Properties, Electropolymerization, and Film Morphology. Macromolecules, 2012, 45, 4529-4539.	2.2	25
46	The Road to Molecular Metal Wires: The Past and Recent Advances of Metal String Complexes. Bulletin of Japan Society of Coordination Chemistry, 2012, 59, 3-10.	0.1	11
47	Large AuAg Alloy Nanoparticles Synthesized in Organic Media Using a Oneâ€Pot Reaction: Their Applications for Highâ€Performance Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2012, 22, 3975-3984.	7.8	82
48	Visual Semiquantification via the Formation of Phase Segregation. Analytical Chemistry, 2011, 83, 3765-3769.	3.2	15
49	Influence of polymer conformations on the aggregation behaviour of alternating dialkylsilylene-[4,4′-divinyl(cyanostilbene)] copolymers. Polymer Chemistry, 2011, 2, 2850.	1.9	13
50	Diodeâ€Like <i>I</i> à€" <i>V</i> Characteristics of a Nonplanar Polyaromatic Compound: a Spectroscopic Study of Isolated and Stacked Dibenzo[<i>g,p</i>]chrysene. Chemistry - an Asian Journal, 2011, 6, 1181-1187.	1.7	10
51	Unsymmetrical Polymeric Ladderphanes by Sequential Polymerization: A New Approach for the Template Synthesis of Polymers with Wellâ€Defined Chain Length and Narrow Polydispersity. Chemistry - an Asian Journal, 2011, 6, 1748-1751.	1.7	28
52	Superiority of Branched Side Chains in Spontaneous Nanowire Formation: Exemplified by Poly(3â€2â€methylbutylthiophene) for Highâ€Performance Solar Cells. Small, 2011, 7, 1098-1107.	5.2	57
53	Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency. Advanced Materials, 2011, 23, 5451-5455.	11.1	107
54	Gearing of Molecular Swirls: Columnar Packing of Nematogenic Hexakis(4â€alkoxyphenylethynyl)benzene Derivatives. Chemistry - A European Journal, 2011, 17, 792-799.	1.7	16

#	Article	IF	Citations
55	Acid/Base―and Anionâ€Controllable Organogels Formed From a Ureaâ€Based Molecular Switch. Angewandte Chemie - International Edition, 2010, 49, 9170-9173.	7.2	104
56	Triple-Stranded Polymeric Ladderphanes. Macromolecules, 2010, 43, 5188-5194.	2.2	28
57	Hexa- <i>peri</i> hexabenzocoronene (HBC)-Incorporated Single- and Double-Stranded Polynorbornenes. Macromolecules, 2010, 43, 8741-8746.	2.2	33
58	Superior Contact for Single-Molecule Conductance: Electronic Coupling of Thiolate and Isothiocyanate on Pt, Pd, and Au. Journal of the American Chemical Society, 2010, 132, 756-764.	6.6	124
59	On the Size Evolution of Gold-Monolayer-Protected Clusters by Ligand Place-Exchange Reactions: The Effect of Headgroupâ 'Gold Interactions. Langmuir, 2010, 26, 6149-6153.	1.6	14
60	On the tuning of electric conductance of extended metal atom chains via axial ligands for $[Ru3(\hat{1}/43-dpa)4(X)2]0/+ (X = NCSâ^{\circ}, CNâ^{\circ})$. Chemical Communications, 2010, 46, 1338.	2.2	52
61	Coherently Aligned Porphyrinâ€Appended Polynorbornenes. Chemistry - A European Journal, 2009, 15, 5719-5728.	1.7	28
62	Oligomeric Tectonics: Supramolecular Assembly of Double‧tranded Oligobisnorbornene through π–π Stacking. Chemistry - A European Journal, 2009, 15, 11594-11600.	1.7	37
63	On the Improvement of Blue Emission for All sp ² -Hybridized Bistriphenylenyls: Incorporating Phenylenyl Moieties To Enhance Film Amorphism. Journal of Physical Chemistry C, 2009, 113, 7405-7410.	1.5	8
64	Poly(bisnorbornanediol). Macromolecules, 2009, 42, 6986-6991.	2.2	11
65	Polymeric Ladderphanes. Journal of the American Chemical Society, 2009, 131, 12579-12585.	6.6	75
66	Shear-Induced Uniaxial Assembly of Polyaromatic Monolayers. E-Journal of Surface Science and Nanotechnology, 2009, 7, 157-160.	0.1	2
67	Liposome-based immunostrip for the rapid detection of Salmonella. Analytical and Bioanalytical Chemistry, 2008, 391, 479-485.	1.9	43
68	Steric Zipper of the Amyloid Fibrils Formed by Residues 109–122 of the Syrian Hamster Prion Protein. Journal of Molecular Biology, 2008, 378, 1142-1154.	2.0	53
69	One-handed helical double stranded polybisnorbornenes. Chemical Communications, 2008, , 6158.	2.2	36
70	Extended Metal-Atom Chains with an Inert Second Row Transition Metal: [Ru ₅ (ν ₅ -tpda) ₄ X ₂] (tpda ^{2â^'} =) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf 5
71	10090-10092. Colorimetric Sensitivity of Gold Nanoparticles: Minimizing Interparticular Repulsion as a General Approach. Analytical Chemistry, 2008, 80, 6560-6566.	3.2	48
72	Shear-Induced Long-Range Uniaxial Assembly of Polyaromatic Monolayers at Molecular Resolution. Journal of the American Chemical Society, 2008, 130, 10454-10455.	6.6	44

#	Article	IF	Citations
73	On the Nanoaggregated Emitter of All sp ² -Hybridized Bistriphenylenyl in the Device Layout of Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2008, 112, 3097-3102.	1.5	6
74	OMCOS for functional polymers - double-stranded DNA-like polymers. Pure and Applied Chemistry, 2008, 80, 819-829.	0.9	22
75	The effect of molecular conformation on single molecule conductance: measurements of ï€-conjugated oligoaryls by STM break junction. Chemical Communications, 2007, , 3074-3076.	2.2	23
76	Thorpe–Ingold effect on the conformation and photophysical properties of dialkylsilylene-spaced divinylarene copolymers. Chemical Communications, 2007, , 3459.	2.2	21
77	Conductance of Alkanediisothiocyanates:  Effect of Headgroupâ^Electrode Contacts. Journal of Physical Chemistry C, 2007, 111, 11450-11455.	1.5	33
78	Thorpeâ^'Ingold Effect on Photoinduced Electron Transfer of Dialkylsilylene-Spaced Divinylarene Copolymers Having Alternating Donor and Acceptor Chromophores. Macromolecules, 2007, 40, 9238-9243.	2.2	18
79	A New Generation of Metal String Complexes: Structure, Magnetism, Spectroscopy, Theoretical Analysis, and Single Molecular Conductance of an Unusual Mixedâ€Valence Linear [Ni ₅] ⁸⁺ Complex. Chemistry - A European Journal, 2007, 13, 8667-8677.	1.7	79
80	From Polynorbornene to the Complementary Polynorbornene by Replication. Angewandte Chemie - International Edition, 2007, 46, 4481-4485.	7.2	74
81	Promotion of the Electrochemical Activity of a Bimetallic Platinumâ^'Ruthenium Catalyst by Oxidation-Induced Segregation. Journal of Physical Chemistry B, 2006, 110, 23300-23305.	1.2	57
82	On the Rigidity of Polynorbornenes with Dipolar Pendant Groups. Chemistry - A European Journal, 2006, 12, 324-330.	1.7	60
83	Molecular Architecture towards Helical Double-Stranded Polymers. Angewandte Chemie - International Edition, 2006, 45, 726-730.	7.2	99
84	A Simple Strategy for Prompt Visual Sensing by Gold Nanoparticles: General Applications of Interparticle Hydrogen Bonds. Angewandte Chemie - International Edition, 2006, 45, 4948-4951.	7.2	115
85	Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angewandte Chemie - International Edition, 2006, 45, 5814-5818.	7.2	180
86	Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angewandte Chemie - International Edition, 2006, 45, 6244-6244.	7.2	5
87	Molecular Metal Wires Built from a Linear Metal Atom Chain Supported by Oligopyridylamido Ligands. , 2006, , 85-117.		40
88	Areca (betel) nut extract activates mitogen-activated protein kinasesand NF- \hat{l}^{0} B in oral keratinocytes. International Journal of Cancer, 2005, 116 , 526-535.	2.3	86
89	Monolayers of Diphenyldiacetylene Derivatives:Â Tuning Molecular Tilt Angles and Photopolymerization Efficiency via Electrodeposited Ag Interlayer on Au. Journal of Physical Chemistry B, 2005, 109, 19161-19168.	1.2	33
90	A Cooperative Effect of Bifunctionalized Nanoparticles on Recognition:Â Sensing Alkali Ions by Crown and Carboxylate Moieties in Aqueous Media. Analytical Chemistry, 2005, 77, 4821-4828.	3.2	117

#	Article	IF	Citations
91	Monolayer Structures of Highly Photoluminescent Furan Oligoaryls:Â An Approach to Improve Packing Crystallinity of Dithiolated Aromatics. Journal of Physical Chemistry B, 2005, 109, 7915-7922.	1.2	8
92	In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. Journal of Chromatography A, 2004, 1023, 143-150.	1.8	43
93	Effect of Underpotentially Deposited Adlayers on Sulfur Bonding Schemes of Organothiols Self-Assembled on Polycrystalline Gold:  sp or sp3 Hybridization. Journal of Physical Chemistry B, 2004, 108, 17497-17504.	1.2	26
94	Effect of Metalâ^'Metal Interactions on Electron Transfer:  an STM Study of One-Dimensional Metal String Complexes. Journal of Physical Chemistry B, 2004, 108, 959-964.	1.2	128
95	Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 2134-2139.	1.2	234
96	Interfaces To Connect Thin-Layer Chromatography with Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2003, 75, 2493-2498.	3.2	55
97	Capillaryâ^'Electrode Alignment by an Optical-Fiber Connector for Amperometric Detection in Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 3906-3910.	3.2	4
98	Structures of Self-Assembled Monolayers of n-Alkanoic Acids on Gold Surfaces Modified by Underpotential Deposition of Silver and Copper:  Oddâ^'Even Effect. Langmuir, 2002, 18, 5473-5478.	1.6	49
99	Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles. Analytical Chemistry, 2002, 74, 330-335.	3.2	285
100	Palladium Film Decoupler for Amperometric Detection in Electrophoresis Chips. Analytical Chemistry, 2001, 73, 758-762.	3.2	74
101	Self-Assembly of Alkanoic Acids on Gold Surfaces Modified by Underpotential Deposition. Journal of Physical Chemistry B, 2001, 105, 4951-4955.	1.2	22
102	Determination of urine catecholamines by capillary electrophoresis with dual-electrode amperometric detection. Biomedical Applications, 2001, 750, 33-39.	1.7	39
103	Scanning Tunneling Microscopy Observations of Butanethiol Self-Assembled Monolayers on Ag Underpotential Deposition Modified Au(111). Langmuir, 2000, 16, 1729-1733.	1.6	14
104	Parallel-Opposed Dual-Electrode Detector with Recycling Amperometric Enhancement for Capillary Electrophoresis. Analytical Chemistry, 1999, 71, 3200-3205.	3.2	25
105	Application of Cysteine Monolayers for Electrochemical Determination of Sub-ppb Copper(II). Analytical Chemistry, 1999, 71, 1549-1552.	3.2	175
106	Integration of Separation Capillary with a Au Film Electrode and an Etched Decoupler in Amperometric Capillary Electrophoresis. Journal of the Chinese Chemical Society, 1998, 45, 257-262.	0.8	4
107	Electrocatalytic Activity of an Immobilized Cofacial Diporphyrin Depends on the Electrode Material. Langmuir, 1997, 13, 2143-2148.	1.6	87
108	Structure Evolution of Aromatic-Derivatized Thiol Monolayers on Evaporated Gold. Langmuir, 1997, 13, 4018-4023.	1.6	301

#	Article	IF	CITATIONS
109	Coadsorption of sulfate anions and silver adatoms on the Au(111) single crystal electrode. Ex situ and in situ comparison. Electrochimica Acta, 1995, 40, 17-28.	2.6	71
110	Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters. Journal of the American Chemical Society, 1995, 117, 12537-12548.	6.6	831
111	Electrochemical Measurements of Anisotropic Diffusion in Thin Lyotropic Liquid Crystal Films Using Interdigitated Array Electrodes. The Journal of Physical Chemistry, 1995, 99, 8804-8811.	2.9	14
112	Chemically Modified Electrodes by Nucleophilic Substitution of Chlorosilylated Platinum Oxide Surfaces. Langmuir, 1994, 10, 3332-3337.	1.6	15
113	In situobservation of monolayer structures of underpotentially deposited Hg on Au(111) with the atomic force microscope. Physical Review Letters, 1992, 68, 1571-1574.	2.9	49
114	In situ atomic force microscopy of underpotential deposition of silver on gold(111). Journal of the American Chemical Society, 1992, 114, 451-458.	6.6	169
115	Correlation of electrode surface structure with activity toward peroxide electroreduction for bismuth monolayers on gold(111). Journal of the American Chemical Society, 1992, 114, 5439-5440.	6.6	91
116	AFM study of the structure of underpotentially deposited Ag and Hg on Au(111). Ultramicroscopy, 1992, 42-44, 437-444.	0.8	41
117	Charge transport in molecular junctions: General physical pictures, electrical measurement techniques, and their challenges. Journal of the Chinese Chemical Society, 0, , .	0.8	1
118	Metal replacement in the syntheses of <scp> M _A M _B M _C </scp> heterometallic metalâ€string complexes: <scp>MPdM</scp> '(dpa) <scp> ₄ Cl ₂ </scp> . Journal of the Chinese Chemical Society, 0, , .	0.8	0