
Amy J Wagers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426005/publications.pdf Version: 2024-02-01

AMYLMACEDS

#	Article	IF	CITATIONS
1	Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 2005, 433, 760-764.	27.8	1,926
2	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
3	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 2013, 16, 1211-1218.	14.8	1,357
4	Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science, 2014, 344, 630-634.	12.6	857
5	Physiological Migration of Hematopoietic Stem and Progenitor Cells. Science, 2001, 294, 1933-1936.	12.6	844
6	Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell, 2013, 153, 828-839.	28.9	791
7	Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle. Science, 2014, 344, 649-652.	12.6	706
8	Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research, 2015, 25, 1860-1872.	5.5	614
9	Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nature Medicine, 2014, 20, 870-880.	30.7	592
10	Rejuvenation of Regeneration in the Aging Central Nervous System. Cell Stem Cell, 2012, 10, 96-103.	11.1	552
11	A multifunctional AAV–CRISPR–Cas9 and its host response. Nature Methods, 2016, 13, 868-874.	19.0	506
12	Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis. Cell, 2014, 156, 440-455.	28.9	417
13	Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity, 2016, 44, 355-367.	14.3	383
14	The cis-Regulatory Atlas of the Mouse Immune System. Cell, 2019, 176, 897-912.e20.	28.9	315
15	Antigen- and Cytokine-Driven Accumulation of Regulatory T Cells in Visceral Adipose Tissue of Lean Mice. Cell Metabolism, 2015, 21, 543-557.	16.2	304
16	The Transcription Factor EGR1 Controls Both the Proliferation and Localization of Hematopoietic Stem Cells. Cell Stem Cell, 2008, 2, 380-391.	11.1	281
17	Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nature Reviews Molecular Cell Biology, 2016, 17, 267-279.	37.0	234
18	The Stem Cell Niche in Regenerative Medicine. Cell Stem Cell, 2012, 10, 362-369.	11.1	229

Amy J WAGERS

#	Article	IF	CITATIONS
19	Diminished Schwann Cell Repair Responses Underlie Age-Associated Impaired Axonal Regeneration. Neuron, 2014, 83, 331-343.	8.1	215
20	Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell, 2021, 184, 4919-4938.e22.	28.9	193
21	Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. Circulation Research, 2016, 118, 29-37.	4.5	161
22	Biochemistry and Biology of GDF11 and Myostatin. Circulation Research, 2016, 118, 1125-1142.	4.5	155
23	The Hippo Transducer YAP1 Transforms Activated Satellite Cells and Is a Potent Effector of Embryonal Rhabdomyosarcoma Formation. Cancer Cell, 2014, 26, 273-287.	16.8	152
24	A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species. Cell, 2013, 155, 909-921.	28.9	144
25	FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE, 2015, 10, e0128094.	2.5	138
26	EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection. Cell, 2016, 164, 884-895.	28.9	108
27	Transcriptome Analysis Identifies Regulators of Hematopoietic Stem and Progenitor Cells. Stem Cell Reports, 2013, 1, 266-280.	4.8	100
28	Rictor/mTORC2 Loss in the Myf5 Lineage Reprograms Brown Fat Metabolism and Protects Mice against Obesity and Metabolic Disease. Cell Reports, 2014, 8, 256-271.	6.4	92
29	Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 2017, 15, 19.	3.8	90
30	Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes and Development, 2014, 28, 1578-1591.	5.9	87
31	Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports, 2018, 10, 1505-1521.	4.8	74
32	Organism-Level Analysis of Vaccination Reveals Networks of Protection across Tissues. Cell, 2017, 171, 398-413.e21.	28.9	69
33	Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells. Proceedings of the United States of America, 2011, 108, 20002-20007.	7.1	66
34	Isolation of Progenitors that Exhibit Myogenic/Osteogenic Bipotency InÂVitro by Fluorescence-Activated Cell Sorting from Human Fetal Muscle. Stem Cell Reports, 2014, 2, 92-106.	4.8	64
35	Developmental regulation of myeloerythroid progenitor function by the <i>Lin28b</i> – <i>let-7</i> – <i>Hmga2</i> axis. Journal of Experimental Medicine, 2016, 213, 1497-1512.	8.5	62
36	Rhabdomyosarcoma: Current Challenges and Their Implications for Developing Therapies. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a025650-a025650.	6.2	60

Amy J WAGERS

#	Article	IF	CITATIONS
37	The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nature Communications, 2019, 10, 5137.	12.8	60
38	Young, Proliferative Thymic Epithelial Cells Engraft and Function in Aging Thymuses. Journal of Immunology, 2015, 194, 4784-4795.	0.8	58
39	Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. ELife, 2015, 4, .	6.0	56
40	FOS licenses early events in stem cell activation driving skeletal muscle regeneration. Cell Reports, 2021, 34, 108656.	6.4	44
41	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	16.2	40
42	In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Reports, 2019, 27, 1254-1264.e7.	6.4	40
43	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	1.4	39
44	Cell-Cycle Dependent Expression of a Translocation-Mediated Fusion Oncogene Mediates Checkpoint Adaptation in Rhabdomyosarcoma. PLoS Genetics, 2014, 10, e1004107.	3.5	38
45	Engineering <i>Escherichia coli</i> into a Protein Delivery System for Mammalian Cells. ACS Synthetic Biology, 2015, 4, 644-654.	3.8	34
46	Overexpressing IRS1 in Endothelial Cells Enhances Angioblast Differentiation and Wound Healing in Diabetes and Insulin Resistance. Diabetes, 2016, 65, 2760-2771.	0.6	29
47	The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. Endocrinology, 2016, 157, 4066-4075.	2.8	28
48	High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Research, 2015, 14, 307-322.	0.7	26
49	Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. Blood, 2016, 128, 1465-1474.	1.4	19
50	Analysis of Cre-mediated genetic deletion of <i>Gdf11</i> in cardiomyocytes of young mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H201-H212.	3.2	16
51	Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice. Scientific Reports, 2020, 10, 4561.	3.3	15
52	Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts. Stem Cells Translational Medicine, 2015, 4, 1101-1108.	3.3	11
53	Prolyl Hydroxylase Domain-2 Inhibition Improves Skeletal Muscle Regeneration in a Male Murine Model of Obesity. Frontiers in Endocrinology, 2017, 8, 153.	3.5	11
54	Steady-state and regenerative hematopoiesis occurs normally in mice in the absence of GDF11. Blood, 2019, 134, 1712-1716.	1.4	8

Amy J WAGERS

#	Article	IF	CITATIONS
55	Age Dependent Alternations In Hematopoietic Stem Cell Niches. Blood, 2011, 118, 2395-2395.	1.4	8
56	Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. IScience, 2020, 23, 101521.	4.1	7
57	What's in a (Sub)strain?. Stem Cell Reports, 2018, 11, 303-305.	4.8	6
58	Attenuation of <scp>PKC</scp> δ enhances metabolic activity and promotes expansion of blood progenitors. EMBO Journal, 2018, 37, .	7.8	5
59	Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus. Scientific Reports, 2019, 9, 18613.	3.3	5
60	Aging and Rejuvenation: Insights from Rusty Gage, Leonard Guarente, and Amy Wagers. Trends in Molecular Medicine, 2016, 22, 633-634.	6.7	4
61	Negative correlation of single-cell <i>PAX3:FOXO1</i> expression with tumorigenicity in rhabdomyosarcoma. Life Science Alliance, 2021, 4, e202001002.	2.8	4
62	Distinct Malignant Behaviors of Mouse Myogenic Tumors Induced by Different Oncogenetic Lesions. Frontiers in Oncology, 2015, 5, 50.	2.8	3
63	Hedgehog-driven myogenic tumors recapitulate skeletal muscle cellular heterogeneity. Experimental Cell Research, 2016, 340, 43-52.	2.6	3
64	Methods of Isolation and Analysis of TREG Immune Infiltrates from Injured and Dystrophic Skeletal Muscle. Methods in Molecular Biology, 2019, 1899, 229-237.	0.9	3
65	Hematopoietic Stem/Progenitor Cell Retention in the Bone Marrow Depends On Tissue Specific Heparan Sulfate Proteoglycans. Blood, 2012, 120, 637-637.	1.4	1
66	Novel Small-Scale Phosphoproteomic Discovery Of Therapeutic Targets For Hematopoietic Stem and Progenitor Cell Mobilization. Blood, 2013, 122, 1183-1183.	1.4	0
67	Inhibition of Let-7 Maturation By Lin28b Controls Timing of Embryonic and Adult Myeloid Progenitor Phenotypes during Development. Blood, 2014, 124, 763-763.	1.4	Ο
68	Tissue Derived Non-Classical Monocyte Derived Host Macrophages Protect Against Murine Intestinal Acute Graft-Versus-Host Disease. Blood, 2018, 132, 3315-3315.	1.4	0
69	Title is missing!. , 2020, 15, e0238572.		Ο
70	Title is missing!. , 2020, 15, e0238572.		0
71	Title is missing!. , 2020, 15, e0238572.		0
72	Title is missing!. , 2020, 15, e0238572.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2020, 15, e0238572.		Ο
74	Title is missing!. , 2020, 15, e0238572.		0