Antonio Campos de Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2424214/publications.pdf

Version: 2024-02-01

76326 74163 6,737 182 40 75 citations h-index g-index papers 193 193 193 6711 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Optimizing the Decellularized Porcine Liver Scaffold Protocol. Cells Tissues Organs, 2022, , 0-9.	2.3	6
2	BKCa Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovascular Drugs and Therapy, 2021, 35, 719-732.	2.6	8
3	New Cardiomyokine Reduces Myocardial Ischemia/Reperfusion Injury by PI3Kâ€AKT Pathway Via a Putative KDELâ€Receptor Binding. Journal of the American Heart Association, 2021, 10, e019685.	3.7	15
4	Cell-Based Therapies for Heart Failure. Frontiers in Pharmacology, 2021, 12, 641116.	3.5	2
5	In Situ Maturated Early-Stage Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improve Cardiac Function by Enhancing Segmental Contraction in Infarcted Rats. Journal of Personalized Medicine, 2021, 11, 374.	2.5	6
6	The evolution of Brazilian Health Sciences and the present situation. The Lancet Regional Health Americas, 2021, 3, 100044.	2.6	0
7	Inclusivity and diversity: Integrating international perspectives on stem cell challenges and potential. Stem Cell Reports, 2021, 16, 1847-1852.	4.8	5
8	<i>MYH7</i> p.Glu903Gln Is a Pathogenic Variant Associated With Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003476.	3.6	4
9	Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 2021, 13, 1231-1247.	2.8	12
10	Covid-19 pandemic, R&D, vaccines, and the urgent need of UBUNTU practice. The Lancet Regional Health Americas, 2021, 1, 100020.	2.6	1
11	Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. Journal of Tissue Engineering, 2020, 11, 204173142092148.	5.5	24
12	Exogenous 10 kDa-Heat Shock Protein Preserves Mitochondrial Function After Hypoxia/Reoxygenation. Frontiers in Pharmacology, 2020, 11, 545.	3.5	12
13	Acute Myocardial Infarction Reduces Respiration in Rat Cardiac Fibers, despite Adipose Tissue Mesenchymal Stromal Cell Transplant. Stem Cells International, 2020, 2020, 1-19.	2.5	6
14	Therapy with Cardiomyocytes Derived from Pluripotent Cells in Chronic Chagasic Cardiomyopathy. Cells, 2020, 9, 1629.	4.1	3
15	Different Signatures of High Cardiorespiratory Capacity Revealed With Metabolomic Profiling in Elite Athletes. International Journal of Sports Physiology and Performance, 2020, 15, 1156-1167.	2.3	11
16	Empagliflozin Reduces Arrhythmic Events and Improves Ca ²⁺ Transient in Hypoxiaâ€induced Injury Rat Cardiomyocytes. FASEB Journal, 2020, 34, 1-1.	0.5	0
17	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	4.1	10
18	Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson–Gilford progeria syndrome. Metabolomics, 2019, 15, 100.	3.0	4

#	Article	IF	CITATIONS
19	Echocardiographic Measurements in a Preclinical Model of Chronic Chagasic Cardiomyopathy in Dogs: Validation and Reproducibility. Frontiers in Cellular and Infection Microbiology, 2019, 9, 332.	3.9	12
20	Cardiac electrical and contractile disorders promoted by anabolic steroid overdose are associated with late autonomic imbalance and impaired Ca2+ handling. Steroids, 2019, 148, 1-10.	1.8	5
21	Expression of potassium channels is relevant for cell survival and migration in a murine bone marrow stromal cell line. Journal of Cellular Physiology, 2019, 234, 18086-18097.	4.1	2
22	Paradoxical effect of testosterone supplementation therapy on cardiac ischemia/reperfusion injury in aged rats. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105335.	2.5	7
23	R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Scientific Reports, 2019, 9, 19203.	3.3	24
24	Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Scientific Reports, 2019, 9, 18077.	3.3	14
25	Abstract 209: iPSC Derived Cardiomyocytes Reproduce Divergent Phenotypes Caused by a LQTS Type-1 Likely Pathogenic Mutation. Circulation Research, 2019, 125, .	4.5	0
26	Stemâ€cell therapy in STâ€segment elevation myocardial infarction with reduced ejection fraction: A multicenter, doubleâ€blind randomized trial. Clinical Cardiology, 2018, 41, 392-399.	1.8	32
27	Functional genomic fabrics are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy. Microbes and Infection, 2018, 20, 185-195.	1.9	14
28	Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy. Stem Cell Research and Therapy, 2018, 9, 30.	5.5	14
29	Generation of patient-specific induced pluripotent stem cell lines from one patient with Jervell and Lange-Nielsen syndrome, one with type 1 long QT syndrome and two healthy relatives. Stem Cell Research, 2018, 31, 174-180.	0.7	9
30	Aging-related compensated hypogonadism: Role of metabolomic analysis in physiopathological and therapeutic evaluation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 39-50.	2.5	30
31	Transjunctional Voltage Dependence Of Gap Junction Channels. , 2018, , 97-116.		1
32	Abstract 503: Modeling Premature Cardiac Aging by Induced Pluripotent Stem Cell From a Patient With Hutchinson-Gilford Progeria Syndrome. Circulation Research, 2018, 123, .	4.5	1
33	Autoantibodies with beta-adrenergic activity from chronic chagasic patients induce cardiac arrhythmias and early afterdepolarization in a drug-induced LQT2 rabbit hearts. International Journal of Cardiology, 2017, 240, 354-359.	1.7	7
34	Cell therapies for Chagas disease. Cytotherapy, 2017, 19, 1339-1349.	0.7	10
35	Hair follicle-derived mesenchymal cells support undifferentiated growth of embryonic stem cells. Experimental and Therapeutic Medicine, 2017, 13, 1779-1788.	1.8	7
36	Cardiosphere-derived cells do not improve cardiac function in rats with cardiac failure. Stem Cell Research and Therapy, 2017, 8, 36.	5.5	29

#	Article	IF	CITATIONS
37	Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy. Arquivos Brasileiros De Cardiologia, 2017, 108, 354-360.	0.8	5
38	Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 2017, Volume 12, 779-793.	6.7	65
39	Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease. Frontiers in Immunology, 2017, 8, 840.	4.8	25
40	Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 551-560.	1.6	2
41	Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials. Arquivos Brasileiros De Cardiologia, 2017, 109, 579-589.	0.8	11
42	PNAUM: integrated approach to Pharmaceutical Services, Science, Technology and Innovation. Revista De Saude Publica, 2016, 50, 3s.	1.7	10
43	Macrophage-dependent IL- $\hat{\Pi}^2$ production induces cardiac arrhythmias in diabetic mice. Nature Communications, 2016, 7, 13344.	12.8	203
44	Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function. Cell Transplantation, 2016, 25, 1609-1622.	2.5	39
45	99m-Technetium binding site in bone marrow mononuclear cells. Stem Cell Research and Therapy, 2015, 6, 115.	5 . 5	5
46	The Einstein-Brazil Fogarty: A decade of synergy. Brazilian Journal of Microbiology, 2015, 46, 945-955.	2.0	2
47	Functional properties of a Brazilian derived mouse embryonic stem cell line. Anais Da Academia Brasileira De Ciencias, 2015, 87, 275-288.	0.8	0
48	Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model. PLoS ONE, 2015, 10, e0127561.	2.5	27
49	Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity. PLoS Neglected Tropical Diseases, 2015, 9, e0003945.	3.0	26
50	Stem Cell-Based Therapies in Chagasic Cardiomyopathy. BioMed Research International, 2015, 2015, 1-5.	1.9	3
51	Generation of human iPS cell line ihFib3.2 from dermal fibroblasts. Stem Cell Research, 2015, 15, 445-448.	0.7	7
52	Expression of ganglioside 9â€O acetyl GD3 in undifferentiated embryonic stem cells. Cell Biology International, 2015, 39, 121-127.	3.0	4
53	Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the) Tj ETQq1 1 0.784	13 1242rgBT	/ 052 rlock 10
54	Regulamentação das terapias celulares no Brasil. Vigilância Sanitária Em Debate: Sociedade, Ciência & Tecnologia, 2015, .	0.1	2

#	Article	IF	Citations
55	Abstract 16165: Embryonic Stem Cell-derived Cardiomyocytes Increase Viable Myocardium but Do Not Improve Function in a Mouse Model of Chagasic Cardiomyopathy. Circulation, 2015, 132, .	1.6	O
56	Levels of circulating anti-muscarinic and anti-adrenergic antibodies and their effect on cardiac arrhythmias and dysautonomia in murine models of Chagas disease. Parasitology, 2014, 141, 1769-1778.	1.5	7
57	Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress. Journal of Cellular and Molecular Medicine, 2014, 18, 824-831.	3.6	14
58	Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway. Stem Cell Research and Therapy, 2014, 5, 102.	5.5	25
59	Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. International Journal of Cardiology, 2014, 171, 199-208.	1.7	15
60	AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion. Cardiovascular Drugs and Therapy, 2014, 28, 125-135.	2.6	29
61	Anti-adrenergic and muscarinic receptor autoantibodies in a canine model of Chagas disease and their modulation by benznidazole. International Journal of Cardiology, 2014, 170, e66-e67.	1.7	12
62	Molecular imaging, biodistribution and efficacy of mesenchymal bone marrow cell therapy in a mouse model of Chagas disease. Microbes and Infection, 2014, 16, 923-935.	1.9	31
63	Human Menstrual Blood-Derived Mesenchymal Cells as New Human Feeder Layer System for Human Embryonic Stem Cells. Cell Medicine, 2014, 7, 25-35.	5.0	7
64	Cardiac Stem Cells. , 2013, , 141-155.		1
65	Abstract 014: Bone Marrow Mesenchymal Stromal Cells Rescue Cardiac Function In Streptozotocin-induced Diabetic Rats. Circulation Research, 2013, 113, .	4.5	0
66	Mesenchymal Bone Marrow Cell Therapy in a Mouse Model of Chagas Disease. Where Do the Cells Go?. PLoS Neglected Tropical Diseases, 2012, 6, e1971.	3.0	43
67	Cell Therapy in Chagas Cardiomyopathy (Chagas Arm of the Multicenter Randomized Trial of Cell) Tj ETQq1 1 0.	.784314 rş 1.6	gBT/Qverlock
68	Adipose-Derived Stem-Cell Treatment of Skeletal Muscle Injury. Journal of Bone and Joint Surgery - Series A, 2012, 94, 609-617.	3.0	63
69	Global Update: Brazil. Regenerative Medicine, 2012, 7, 144-147.	1.7	6
70	Human Menstrual Blood-Derived Mesenchymal Cells as a Cell Source of Rapid and Efficient Nuclear Reprogramming. Cell Transplantation, 2012, 21, 2215-2224.	2.5	29
71	Adipose-Derived Stromal Cell Therapy Improves Cardiac Function after Coronary Occlusion in Rats. Cell Transplantation, 2012, 21, 1985-1996.	2.5	16
72	Soluble Factors from Multipotent Mesenchymal Stromal Cells have Antinecrotic Effect on Cardiomyocytes in Vitro and Improve Cardiac Function in Infarcted Rat Hearts. Cell Transplantation, 2012, 21, 1011-1021.	2.5	21

#	Article	IF	Citations
73	428 BONE MARROW MONONUCLEAR CELLS THERAPY IMPROVES LIVER PERFUSION IN CIRRHOTIC PATIENTS. Journal of Hepatology, 2012, 56, S170.	3.7	0
74	Chagas Heart Disease. Cardiology in Review, 2012, 20, 53-65.	1.4	90
75	Ventricular Arrhythmias are Related to the Presence of Autoantibodies With Adrenergic Activity in Chronic Chagasic Patients With Preserved Left Ventricular Function. Journal of Cardiac Failure, 2012, 18, 423-431.	1.7	6
76	Acute adenosine increases cardiac vagal and reduces sympathetic efferent nerve activities in rats. Experimental Physiology, 2012, 97, 719-729.	2.0	11
77	Labeling Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Analysis of the Labeling Efficacy by Microscopy and Magnetic Resonance Imaging. Methods in Molecular Biology, 2012, 906, 239-252.	0.9	41
78	Functional and Transcriptomic Recovery of Infarcted Mouse Myocardium Treated with Bone Marrow Mononuclear Cells. Stem Cell Reviews and Reports, 2012, 8, 251-261.	5.6	20
79	Bone marrow progenitor cells do not contribute to liver fibrogenic cells. World Journal of Hepatology, 2012, 4, 274.	2.0	7
80	Turning scar into muscle. World Journal of Cardiology, 2012, 4, 267.	1.5	1
81	Bone marrow-derived cell therapy in chagasic cardiac disease: a review of pre-clinical and clinical results. Cardiovascular Diagnosis and Therapy, 2012, 2, 213-9.	1.7	1
82	Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle, 2011, 10, 1448-1455.	2.6	68
83	Biodistribution of bone marrow mononuclear cells in chronic chagasic cardiomyopathy after intracoronary injection. International Journal of Cardiology, 2011, 149, 310-314.	1.7	26
84	Cell-Based Therapy in Chagas Disease. Advances in Parasitology, 2011, 75, 49-63.	3.2	4
85	Gap Junctions and Chagas Disease. Advances in Parasitology, 2011, 76, 63-81.	3.2	25
86	Bone marrow cells obtained from cirrhotic rats do not improve function or reduce fibrosis in a chronic liver disease model. Clinical Transplantation, 2011, 25, 54-60.	1.6	14
87	Bone marrow mononuclear cell therapy for patients with cirrhosis: a Phase 1 study. Liver International, 2011, 31, 391-400.	3.9	53
88	Cysteine Proteases in Differentiation of Embryonic Stem Cells into Neural Cells. Stem Cells and Development, 2011, 20, 1859-1872.	2.1	6
89	Correction: Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology, 2011, 9, 12.	9.1	1
90	Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanobiotechnology, 2011, 9, 4.	9.1	77

#	Article	IF	Citations
91	Cell therapy in dilated cardiomyopathy: from animal models to clinical trials. Brazilian Journal of Medical and Biological Research, 2011, 44, 388-393.	1.5	5
92	Voltageâ€dependent calcium and chloride currents in S17 bone marrow stromal cell line. Journal of Cellular Physiology, 2010, 223, 244-251.	4.1	2
93	Granulocyte-colony Stimulating Factor Treatment of Chronic Myocardial Infarction. Cardiovascular Drugs and Therapy, 2010, 24, 121-130.	2.6	21
94	Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells. BMC Cell Biology, 2010, 11, 3.	3.0	12
95	Cardiac gene expression and systemic cytokine profile are complementary in a murine model of post-ischemic heart failure. Brazilian Journal of Medical and Biological Research, 2010, 43, 377-389.	1.5	21
96	A safety and feasibility study of cell therapy in dilated cardiomyopathy. Brazilian Journal of Medical and Biological Research, 2010, 43, 989-995.	1.5	25
97	One and a half ventricular repair as an alternative for hypoplastic right ventricle. Brazilian Journal of Cardiovascular Surgery, 2010, 25, 466-473.	0.6	9
98	Gene Expression Changes Associated with Myocarditis and Fibrosis in Hearts of Mice with Chronic Chagasic Cardiomyopathy. Journal of Infectious Diseases, 2010, 202, 416-426.	4.0	64
99	In vivo inhibitory effect of anti-muscarinic autoantibodies on the parasympathetic function in Chagas disease. International Journal of Cardiology, 2010, 145, 339-340.	1.7	9
100	Chronic treatment with anabolic steroids induces ventricular repolarization disturbances: Cellular, ionic and molecular mechanism. Journal of Molecular and Cellular Cardiology, 2010, 49, 165-175.	1.9	62
101	Ultrasound imaging in an experimental model of fatty liver disease and cirrhosis in rats. BMC Veterinary Research, 2010, 6, 6.	1.9	28
102	Chemical Induction of Cardiac Differentiation in P19 Embryonal Carcinoma Stem Cells. Stem Cells and Development, 2010, 19, 403-412.	2.1	38
103	Human umbilical cord blood cells in infarcted rats. Brazilian Journal of Medical and Biological Research, 2010, 43, 290-296.	1.5	9
104	Heart regeneration: Past, present and future. World Journal of Cardiology, 2010, 2, 107.	1.5	34
105	Cell Therapy in Chagas Disease. Interdisciplinary Perspectives on Infectious Diseases, 2009, 2009, 1-6.	1.4	7
106	Connexin40 Messenger Ribonucleic Acid Is Positively Regulated by Thyroid Hormone (TH) Acting in Cardiac Atria via the TH Receptor. Endocrinology, 2009, 150, 546-554.	2.8	23
107	Perspectives on Trypanosoma cruzi–Induced Heart Disease (Chagas Disease). Progress in Cardiovascular Diseases, 2009, 51, 524-539.	3.1	138
108	Transcriptomic alterations in Trypanosoma cruzi-infected cardiac myocytes. Microbes and Infection, 2009, 11, 1140-1149.	1.9	42

#	Article	IF	CITATIONS
109	Enhanced parasympathetic activity in Chagas disease still stands in need of proof. International Journal of Cardiology, 2009, 135, 406-408.	1.7	5
110	Multicenter double blind trial of autologous bone marrow mononuclear cell transplantation through intracoronary injection post acute myocardium infarction – MiHeart/AMI study. Trials, 2008, 9, 41.	1.6	12
111	Bone Marrow Multipotent Mesenchymal Stromal Cells Do Not Reduce Fibrosis or Improve Function in a Rat Model of Severe Chronic Liver Injury. Stem Cells, 2008, 26, 1307-1314.	3.2	144
112	Chagas disease: Impaired vagal modulation has been demonstrated, enhanced parasympathetic activity remains to be proved. International Journal of Cardiology, 2008, 123, 330-332.	1.7	8
113	Alterations in myocardial gene expression associated with experimental Trypanosoma cruzi infection. Genomics, 2008, 91, 423-432.	2.9	29
114	Autoantibodies Enhance Agonist Action and Binding to Cardiac Muscarinic Receptors in Chronic Chagas' Disease. Journal of Receptor and Signal Transduction Research, 2008, 28, 375-401.	2.5	22
115	Bone Marrow Cell Therapy Ameliorates and Reverses Chagasic Cardiomyopathy in a Mouse Model. Journal of Infectious Diseases, 2008, 197, 544-547.	4.0	58
116	Antibodies with beta-adrenergic activity from chronic chagasic patients modulate the QT interval and M cell action potential duration. Europace, 2008, 10, 868-876.	1.7	25
117	Bone Marrow Cell Transplant does Not Prevent or Reverse Murine Liver Cirrhosis. Cell Transplantation, 2008, 17, 943-953.	2.5	38
118	Envolvimento de auto-anticorpos na fisiopatologia da Doença de Chagas. Arquivos Brasileiros De Cardiologia, 2008, 91, 281-286.	0.8	18
119	An ultrasound and histomorphological analysis of experimental liver cirrhosis in rats. Brazilian Journal of Medical and Biological Research, 2008, 41, 992-999.	1.5	12
120	Cellular cardiomyoplasty in large myocardial infarction: Can the beneficial effect be enhanced by ACE-inhibitor therapy?. European Journal of Heart Failure, 2007, 9, 558-567.	7.1	13
121	Cellular therapy in Chagas' disease: potential applications in patients with chronic cardiomyopathy. Regenerative Medicine, 2007, 2, 257-264.	1.7	19
122	Cardioprotective Properties of Humoral Factors Released From Rat Hearts Subject to Ischemic Preconditioning. Journal of Cardiovascular Pharmacology, 2007, 49, 214-220.	1.9	87
123	Human antibodies with muscarinic activity modulate ventricular repolarization: Basis for electrical disturbance. International Journal of Cardiology, 2007, 115, 373-380.	1.7	33
124	Early occurrence of anti-muscarinic autoantibodies and abnormal vagal modulation in Chagas disease. International Journal of Cardiology, 2007, 117, 59-63.	1.7	49
125	Time course of echocardiographic and electrocardiographic parameters in myocardial infarct in rats. Anais Da Academia Brasileira De Ciencias, 2007, 79, 639-648.	0.8	21
126	Production of transgenic goat (Capra hircus) with human Granulocyte Colony Stimulating Factor (hG-CSF) gene in Brazil. Anais Da Academia Brasileira De Ciencias, 2007, 79, 585-592.	0.8	28

#	Article	IF	CITATIONS
127	M ulticenter randomi zed trial of cell the rapy in car diopat hies – MiHeart Study. Trials, 2007, 8, 2.	1.6	47
128	Nandrolone decanoate impairs exercise-induced cardioprotection: Role of antioxidant enzymes. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 223-230.	2.5	53
129	Ectopic Ossification in the Scar Tissue of Rats with Myocardial Infarction. Cell Transplantation, 2006, 15, 389-397.	2.5	15
130	Characterization of cardiopulmonary function and cardiac muscarinic and adrenergic receptor density adaptation in C57BL/6 mice with chronic Trypanosoma cruzi infection. Parasitology, 2006, 133, 729.	1.5	19
131	G-CSF does not improve systolic function in a rat model of acute myocardial infarction. Basic Research in Cardiology, 2006, 101, 494-501.	5.9	32
132	Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, 2006, 96, 487-494.	2.5	85
133	Treatment with Benznidazole during the Chronic Phase of Experimental Chagas' Disease Decreases Cardiac Alterations. Antimicrobial Agents and Chemotherapy, 2005, 49, 1521-1528.	3.2	220
134	DNA immunizations with M muscarinic and ? adrenergic receptor coding plasmids impair cardiac function in mice. Journal of Molecular and Cellular Cardiology, 2005, 38, 703-714.	1.9	29
135	Cardiac effects of oxytocin: Is there a role for this peptide in cardiovascular homeostasis?. Regulatory Peptides, 2005, 132, 107-112.	1.9	42
136	Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. Anais Da Academia Brasileira De Ciencias, 2004, 76, 743-756.	0.8	20
137	Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. Journal of Cell Science, 2004, 117, 4717-4726.	2.0	49
138	Improved Exercise Capacity and Ischemia 6 and 12 Months After Transendocardial Injection of Autologous Bone Marrow Mononuclear Cells for Ischemic Cardiomyopathy. Circulation, 2004, 110, II-213-II-218.	1.6	310
139	Transcriptional regulation of the murine promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovascular Research, 2004, 64, 402-411.	3.8	91
140	Sera from patients with idiopathic dilated cardiomyopathy decrease ICa in cardiomyocytes isolated from rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1928-H1936.	3.2	21
141	Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H464-H470.	3.2	72
142	Mechanical and energetic effects of chronic chagasic patients' antibodies on rat myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1239-H1245.	3.2	3
143	Connexin expression and gap-junction-mediated cell interactions in an in vitro model of haemopoietic stroma. Cell and Tissue Research, 2004, 316, 65-76.	2.9	14
144	Characterization of connexin 30.3 and 43 in thymocytes. Immunology Letters, 2004, 94, 65-75.	2.5	22

#	Article	IF	CITATIONS
145	Rhodnius prolixus Malpighian tubule's aquaporin expression is modulated by 5-hydroxytryptamine. Archives of Insect Biochemistry and Physiology, 2004, 57, 133-141.	1.5	34
146	Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice. American Journal of Pathology, 2004, 164, 441-447.	3.8	103
147	Correlation between conformation and antibody binding: NMR structure of cross-reactive peptides fromT. cruzi, human andL. braziliensis. FEBS Letters, 2004, 560, 134-140.	2.8	14
148	Transendocardial, Autologous Bone Marrow Cell Transplantation for Severe, Chronic Ischemic Heart Failure. Circulation, 2003, 107, 2294-2302.	1.6	1,233
149	Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. Journal of Endocrinology, 2003, 177, 327-335.	2.6	36
150	Human chagasic IgGs bind to cardiac muscarinic receptors and impair L-type Ca currents. Cardiovascular Research, 2003, 58, 55-65.	3.8	37
151	A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. American Journal of Physiology - Cell Physiology, 2003, 285, C1304-C1313.	4.6	37
152	Pharmacologic properties of P2Z/P2X7receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood, 2000, 96, 996-1005.	1.4	63
153	Gap junctions in the cardiovascular and immune systems. Brazilian Journal of Medical and Biological Research, 2000, 33, 365-368.	1.5	11
154	Sera from chronic chagasic patients depress cardiac electrogenesis and conduction. Brazilian Journal of Medical and Biological Research, 2000, 33, 439-446.	1.5	30
155	Introduction. Brain Research Reviews, 2000, 32, 1-2.	9.0	2
156	David Spray and science in Brazil. Brain Research Reviews, 2000, 32, 9-10.	9.0	0
157	Nervous system diseases involving gap junctions. Brain Research Reviews, 2000, 32, 189-191.	9.0	17
158	Short term regulation of cell-cell communication in TM3 Leydig cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1496, 325-332.	4.1	8
159	Neonatal lupus syndrome: the heart as a target of the immune system. Anais Da Academia Brasileira De Ciencias, 2000, 72, 83-90.	0.8	10
160	Pharmacologic properties of P2Z/P2X7receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood, 2000, 96, 996-1005.	1.4	4
161	Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7541-7546.	7.1	158
162	Chapter 28: Gap Junctions Are Specifically Disrupted by Trypanosoma cruzi Infection. Current Topics in Membranes, 1999, , 625-634.	0.9	1

#	Article	IF	CITATIONS
163	Gap junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Research, 1998, 790, 304-314.	2.2	38
164	Gap junction-mediated loops of neuronal-glial interactions. Glia, 1998, 24, 97-107.	4.9	38
165	Gap junctions: a novel route for direct cell–cell communication in the immune system?. Trends in Immunology, 1998, 19, 269-275.	7.5	35
166	Induction of in vitro heart block is not restricted to affinity purified anti-52 kDa Ro/SSA antibody from mothers of children with neonatal lupus. Lupus, 1998, 7, 141-147.	1.6	30
167	Functionally active cardiac antibodies in chronic Chagas' disease are specifically blocked by <i>Trypanosoma cruzi</i>	0.5	54
168	Is the mammalian porin channel, VDAC, a perfect cylinder in the high conductance state?. FEBS Letters, 1997, 416, 187-189.	2.8	20
169	Sera From Chronic Chagasic Patients With Complex Cardiac Arrhythmias Depress Electrogenesis and Conduction in Isolated Rabbit Hearts. Circulation, 1997, 96, 2031-2037.	1.6	80
170	Characterization of P2Z purinergic receptors on phagocytic cells of the thymic reticulum in culture. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1280, 217-222.	2.6	26
171	Properties of Chicken Lens MIP Channels Reconstituted into Planar Lipid Bilayers. Journal of Membrane Biology, 1996, 154, 239-249.	2.1	31
172	Functional gap junctions in thymic epithelial cells are formed by connexin 43. European Journal of Immunology, 1995, 25, 431-437.	2.9	62
173	Conduction Defects and Arrhythmias in Chagas' Disease: Journal of Cardiovascular Electrophysiology, 1994, 5, 686-698.	1.7	56
174	Intrathymic Gap Junction-Mediated Communication. Advances in Experimental Medicine and Biology, 1994, 355, 155-158.	1.6	8
175	Cellular mechanism of the conduction abnormalities induced by serum from anti-Ro/SSA-positive patients in rabbit hearts Journal of Clinical Investigation, 1994, 93, 718-724.	8.2	135
176	Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi Circulation Research, 1992, 70, 733-742.	4.5	80
177	Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver. Biophysical Journal, 1991, 59, 920-925.	0.5	40
178	Ryanodine does not affect the potassium channel from the sarcoplasmic reticulum of skeletal muscle. Biochemical and Biophysical Research Communications, 1987, 148, 1137-1143.	2.1	0
179	Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification Journal of Cell Biology, 1984, 99, 174-179.	5. 2	26
180	Gating of gap junction channels. Biophysical Journal, 1984, 45, 219-230.	0.5	131

ANTONIO CAMPOS DE

#	Article	lF	CITATIONS
181	pH Dependence of transmission at electronic synapses of the crayfish septate axon. Brain Research, 1984, 321, 279-286.	2.2	28
182	Bases da terapia celular em cardiologia. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 75-81.	0.7	1