Matthew J O'connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423721/publications.pdf

Version: 2024-02-01

567281 580821 26 1,798 15 25 citations g-index h-index papers 35 35 35 2315 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Generation and Analysis of dsDNA Breaks for Checkpoint and Repair Studies in Fission Yeast. Methods in Molecular Biology, 2021, 2267, 191-205.	0.9	O
2	Doxycycline promotes proteasome fitness in the central nervous system. Scientific Reports, 2021, 11, 17003.	3.3	4
3	XPG-related nucleases are hierarchically recruited for double-stranded rDNA break resection. Journal of Biological Chemistry, 2019, 294, 7632-7643.	3.4	5
4	DNA Topoisomerase II modulates acetyl-regulation of cohesin-mediated chromosome dynamics. Current Genetics, 2017, 63, 923-930.	1.7	9
5	An acetyltransferase-independent function of Eso1 regulates centromere cohesion. Molecular Biology of the Cell, 2016, 27, 4002-4010.	2.1	4
6	Molecular mechanisms involved in initiation of the DNA damage response. Molecular and Cellular Oncology, 2015, 2, e970065.	0.7	4
7	H2A.Z-Dependent Regulation of Cohesin Dynamics on Chromosome Arms. Molecular and Cellular Biology, 2014, 34, 2092-2104.	2.3	12
8	Functional interplay between cohesin and Smc5/6 complexes. Chromosoma, 2014, 123, 437-445.	2.2	10
9	Cell Cycle Regulation by Checkpoints. Methods in Molecular Biology, 2014, 1170, 29-40.	0.9	356
10	Regulatory motifs in Chk1. Cell Cycle, 2013, 12, 916-922.	2.6	12
10	Regulatory motifs in Chk1. Cell Cycle, 2013, 12, 916-922. Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302.	2.6	12
11	Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell	7.8	8
11 12	Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell Cycle, 2010, 9, 2065-2070. The G2 DNA damage checkpoint: Could this ancient regulator be the Achilles heel of cancer? Cancer	7.8 2.6	25
11 12	Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell Cycle, 2010, 9, 2065-2070. The G2 DNA damage checkpoint: Could this ancient regulator be the Achilles heel of cancer?. Cancer Biology and Therapy, 2009, 8, 1433-1439. Smc5-Smc6-Dependent Removal of Cohesin from Mitotic Chromosomes. Molecular and Cellular	7.8 2.6 3.4	8 25 54
11 12 13	Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell Cycle, 2010, 9, 2065-2070. The G2 DNA damage checkpoint: Could this ancient regulator be the Achilles heel of cancer?. Cancer Biology and Therapy, 2009, 8, 1433-1439. Smc5-Smc6-Dependent Removal of Cohesin from Mitotic Chromosomes. Molecular and Cellular Biology, 2009, 29, 4363-4375.	7.8 2.6 3.4 2.3	8 25 54 48
11 12 13 14	Initiation of DNA damage responses through XPG-related nucleases. EMBO Journal, 2012, 32, 290-302. SMC complexes and topoisomerase II work together so that sister chromatids can work apart. Cell Cycle, 2010, 9, 2065-2070. The G2 DNA damage checkpoint: Could this ancient regulator be the Achilles heel of cancer?. Cancer Biology and Therapy, 2009, 8, 1433-1439. Smc5-Smc6-Dependent Removal of Cohesin from Mitotic Chromosomes. Molecular and Cellular Biology, 2009, 29, 4363-4375. Regulation of Chk1. Cell Division, 2009, 4, 8.	7.8 2.6 3.4 2.3	8 25 54 48 70

#	Article	IF	CITATIONS
19	G2 damage checkpoints: what is the turn-on?. Journal of Cell Science, 2005, 118, 1-6.	2.0	95
20	Coordination of DNA Damage Responses via the Smc5/Smc6 Complex. Molecular and Cellular Biology, 2004, 24, 662-674.	2.3	80
21	DNA damage checkpoint maintenance through sustained Chk1 activity. Journal of Cell Science, 2004, 117, 3489-3498.	2.0	39
22	Never say never. The NIMA-related protein kinases in mitotic control. Trends in Cell Biology, 2003, 13, 221-228.	7.9	221
23	Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases. Genome Biology, 2002, 3, reviews3003.1.	9.6	46
24	Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest. Journal of Cell Science, 2002, 115, 4555-4564.	2.0	139
25	The G2-phase DNA-damage checkpoint. Trends in Cell Biology, 2000, 10, 296-303.	7.9	352
26	Rad18 Is Required for DNA Repair and Checkpoint Responses in Fission Yeast. Molecular Biology of the Cell, 1999, 10, 2905-2918.	2.1	129