
Michael Lewandowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organosulfate Formation in Biogenic Secondary Organic Aerosol. Journal of Physical Chemistry A, 2008, 112, 8345-8378.	2.5	594
2	Evidence for Organosulfates in Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 517-527.	10.0	591
3	Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmospheric Environment, 2007, 41, 8288-8300.	4.1	459
4	Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene. Environmental Science & Technology, 2007, 41, 5363-5369.	10.0	457
5	3â€methylâ€1,2,3â€butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	268
6	Hydroxydicarboxylic Acids:Â Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 2007, 41, 1628-1634.	10.0	226
7	Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(â°') electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2008, 43, 371-382.	1.6	222
8	Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation. Environmental Science & Technology, 2013, 47, 11056-11064.	10.0	222
9	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	7.1	186
10	Secondary Organic Carbon and Aerosol Yields from the Irradiations of Isoprene and α-Pinene in the Presence of NOx and SO2. Environmental Science & Technology, 2006, 40, 3807-3812.	10.0	172
11	β-caryophyllinic acid: An atmospheric tracer forβ-caryophyllene secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	145
12	Primary and Secondary Contributions to Ambient PM in the Midwestern United States. Environmental Science & Technology, 2008, 42, 3303-3309.	10.0	140
13	Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitroaromatic Compounds. Environmental Science & amp; Technology, 2017, 51, 11607-11616.	10.0	132
14	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Technology, 2012, 46, 9437-9446.	10.0	128
15	Formation of secondary organic aerosol from irradiated <i>α</i> â€pinene/toluene/NO _{<i>x</i>} mixtures and the effect of isoprene and sulfur dioxide. Journal of Geophysical Research, 2008, 113, .	3.3	108
16	Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	105
17	Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 2009, 43, 5567-5574.	4.1	97
18	Analysis of Secondary Organic Aerosol Compounds from the Photooxidation of d-Limonene in the Presence of NOX and their Detection in Ambient PM2.5. Environmental Science & Technology, 2006, 40, 3819-3828.	10.0	91

#	Article	IF	CITATIONS
19	Composition of PM2.5 during the summer of 2003 in Research Triangle Park, North Carolina. Atmospheric Environment, 2007, 41, 4073-4083.	4.1	91
20	Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons. Environmental Science & Technology, 2009, 43, 7742-7747.	10.0	83
21	Thermal properties of secondary organic aerosols. Geophysical Research Letters, 2006, 33, .	4.0	76
22	Contributions of Toluene and α-Pinene to SOA Formed in an Irradiated Toluene/α-Pinene/NOx/ Air Mixture:Â Comparison of Results Using14C Content and SOA Organic Tracer Methods. Environmental Science & Technology, 2007, 41, 3972-3976.	10.0	75
23	Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals. Environmental Chemistry, 2013, 10, 178.	1.5	75
24	Contribution of Primary and Secondary Sources to Organic Aerosol and PM _{2.5} at SEARCH Network Sites. Journal of the Air and Waste Management Association, 2010, 60, 1388-1399.	1.9	70
25	Secondary organic aerosol characterisation at field sites across the United States during the spring–summer period. International Journal of Environmental Analytical Chemistry, 2013, 93, 1084-1103.	3.3	59
26	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
27	Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols. Aerosol Science and Technology, 2013, 47, 294-309.	3.1	50
28	Contributions of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosol during 2006 in Research Triangle Park, NC. Aerosol and Air Quality Research, 2011, 11, 99-108.	2.1	50
29	Light absorption of organic carbon and its sources at a southeastern U.S. location in summer. Environmental Pollution, 2019, 244, 38-46.	7.5	48
30	Characterization of Polar Organosulfates in Secondary Organic Aerosol from the Green Leaf Volatile 3- <i>Z</i> Hexenal. Environmental Science & Dechnology, 2014, 48, 12671-12678.	10.0	45
31	Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2- <i>E</i> -pentenal, 2- <i>E</i> -hexenal, and 3- <i>Z</i> -hexenal. Atmospheric Chemistry and Physics, 2016, 16, 7135-7148.	4.9	41
32	Formation of organic tracers for isoprene SOA under acidic conditions. Atmospheric Environment, 2010, 44, 1798-1805.	4.1	37
33	Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmospheric Environment, 2020, 223, 117227.	4.1	34
34	Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity. Atmospheric Chemistry and Physics, 2018, 18, 18101-18121.	4.9	33
35	2-Hydroxyterpenylic Acid: An Oxygenated Marker Compound for α-Pinene Secondary Organic Aerosol in Ambient Fine Aerosol. Environmental Science & Technology, 2014, 48, 4901-4908.	10.0	32
36	A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis. International Journal of Occupational and Environmental Health, 2010, 16, 488-507.	1.2	30

Michael Lewandowski

#	Article	IF	CITATIONS
37	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
38	Organic Hydroxy Acids as Highly Oxygenated Molecular (HOM) Tracers for Aged Isoprene Aerosol. Environmental Science & Technology, 2019, 53, 14516-14527.	10.0	17
39	Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures. Atmospheric Environment, 2018, 178, 164-172.	4.1	16
40	Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol. Aerosol Science and Technology, 2018, 52, 992-1004.	3.1	16
41	Investigation of a Systematic Offset in the Measurement of Organic Carbon with a Semicontinuous Analyzer. Journal of the Air and Waste Management Association, 2007, 57, 596-599.	1.9	13
42	Predicting Thermal Behavior of Secondary Organic Aerosols. Environmental Science & Technology, 2017, 51, 9911-9919.	10.0	12
43	Constraining carbonaceous aerosol sources in a receptor model by including 14C data with redox species, organic tracers, and elemental/organic carbon measurements. Atmospheric Environment, 2013, 80, 216-225.	4.1	11
44	Evaluation of an Air Quality Health Index for Predicting the Mutagenicity of Simulated Atmospheres. Environmental Science & Technology, 2018, 52, 3045-3053.	10.0	11
45	Rapid production of highly oxidized molecules in isoprene aerosol via peroxy and alkoxy radical isomerization pathways in low and high NOx environments: Combined laboratory, computational and field studies. Science of the Total Environment, 2021, 775, 145592.	8.0	11
46	Time series analysis of wintertime O3 and NOx formation using vector autoregressions. Atmospheric Environment, 2019, 218, 116988.	4.1	9
47	Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer. Aerosol Science and Technology, 2015, 49, 485-494.	3.1	8
48	Ozonolysis of α/β-farnesene mixture: Analysis of gas-phase and particulate reaction products. Atmospheric Environment, 2017, 169, 175-192.	4.1	8
49	Characterization of aerosol nitroaromatic compounds: Validation of an experimental method. Journal of Mass Spectrometry, 2018, 53, 680-692.	1.6	8
50	A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis. International Journal of Occupational and Environmental Health, 2010, 16, 488-507.	1.2	8
51	Qualitative and quantitative assessment of unresolved complex mixture in PM2.5 of Bakersfield, CA. Atmospheric Environment, 2014, 98, 368-375.	4.1	6
52	Photochemical Conversion of Surrogate Emissions for Use in Toxicological Studies: Role of Particulate- and Gas-Phase Products. Environmental Science & Technology, 2018, 52, 3037-3044.	10.0	6
53	Relative contributions of selected multigeneration products to chamber SOA formed from photooxidation of a range (C10–C17) of n-alkanes under high NO conditions. Atmospheric Environment, 2021, 244, 117976.	4.1	6
54	Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. Environmental Pollution, 2022, 301, 119010.	7.5	6

#	Article	IF	CITATIONS
55	Quantifying wintertime O3 and NOx formation with relevance vector machines. Atmospheric Environment, 2021, 259, 118538.	4.1	5
56	Constraints on primary and secondary particulate carbon sources using chemical tracer and 14 C methods during CalNex-Bakersfield. Atmospheric Environment, 2017, 166, 204-214.	4.1	5
57	Photocatalytic Oxidation of Gas-Phase Aromatic Contaminants. , 2003, , .		2
58	Effects of TiO2 Pretreatments on the Photocatalytic Oxidation of Gas-Phase Aromatic Contaminants. Journal of Advanced Oxidation Technologies, 2002, 5, .	0.5	0
59	Data mining approaches to understanding the formation of secondary organic aerosol. Atmospheric Environment, 2021, 252, 118345.	4.1	Ο
60	Quantifying wintertime O and NO formation with relevance vector machines. Atmospheric Environment, 2021, 259, 1-118538.	4.1	0