Sergio Martinoia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422669/publications.pdf Version: 2024-02-01

		71102	91884
130	5,413	41	69
papers	citations	h-index	g-index
131	131	131	4005
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Rapid generation of functional engineered 3D human neuronal assemblies: network dynamics evaluated by Micro-Electrodes Arrays. Journal of Neural Engineering, 2021, 18, .	3.5	8
2	A three-dimensional micro-electrode array for <i>in-vitro</i> neuronal interfacing. Journal of Neural Engineering, 2020, 17, 036033.	3.5	20
3	Chitosan biopolymer: Alternative adhesion factor and scaffold matrix for 2D and 3D neuronal cultures. Biomedical Science and Engineering, 2020, , .	0.0	4
4	Nanomaterial-Assisted Acoustic Neural Stimulation. , 2020, , 347-363.		4
5	Three-Dimensional Microelectrodes Array Based on Vertically Stacked Beads For Mapping Neurons' Electrophysiological Activity. , 2019, , .		7
6	From MEAs to MOAs: The Next Generation of Bioelectronic Interfaces for Neuronal Cultures. Advances in Neurobiology, 2019, 22, 155-167.	1.8	0
7	Brain-on-a-Chip: A Human 3D Model for Clinical Application. Studies in Health Technology and Informatics, 2019, 261, 274-279.	0.3	1
8	SpiCoDyn: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings. Neuroinformatics, 2018, 16, 15-30.	2.8	12
9	Equivalent Circuit of the Neuro-Electronic Junction for Signal Recordings From Planar and Engulfed Micro-Nano-Electrodes. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 3-12.	4.0	23
10	Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials, 2018, 156, 159-171.	11.4	65
11	Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. Journal of Neural Engineering, 2018, 15, 036016.	3.5	38
12	ldentification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings. PLoS Computational Biology, 2018, 14, e1006381.	3.2	66
13	A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. NeuroToxicology, 2017, 60, 280-292.	3.0	72
14	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3. BMC Neuroscience, 2017, 18, .	1.9	7
15	Stimulation triggers endogenous activity patterns in cultured cortical networks. Scientific Reports, 2017, 7, 9080.	3.3	31
16	Structurally and functionally interconnected 3D in vitro neuronal assemblies coupled to Micro-Electrode Arrays. , 2017, , .		1
17	A toolbox for dynamic and connectivity analysis of neuronal spike trains data. , 2017, , .		1
18	ToolConnect: A Functional Connectivity Toolbox for In vitro Networks. Frontiers in Neuroinformatics, 2016, 10, 13.	2.5	25

#	Article	IF	CITATIONS
19	Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models. Frontiers in Neuroscience, 2016, 10, 282.	2.8	51
20	From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 2016, 13, 026023.	3.5	39
21	Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks. Scientific Reports, 2015, 5, 10578.	3.3	81
22	Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model. Journal of Visualized Experiments, 2015, , e53080.	0.3	12
23	Axon-somatic back-propagation in detailed models of spinal alpha motoneurons. Frontiers in Computational Neuroscience, 2015, 9, 15.	2.1	14
24	A new connectivity toolbox to infer topological features of in-vitro neural networks. , 2015, 2015, 2832-5.		1
25	Characterization of the spiking and bursting activity of the subthalamic nucleus in patients with Parkinson's disease. , 2015, , .		2
26	Functional connectivity in cultured cortical networks during development: Comparison between correlation and information theory-based algorithms. , 2015, , .		0
27	A topological study of repetitive co-activation networks in <i>in vitro</i> cortical assemblies. Physical Biology, 2015, 12, 016007.	1.8	14
28	3D engineered neural networks coupled to Micro-Electrode based devices: a new experimental model for neurophysiological applications. , 2015, , .		1
29	Emergence of critical dynamics in large-scale in vitro cortical networks. , 2015, 2015, 4737-40.		2
30	Partial correlation analysis for functional connectivity studies in cortical networks. BMC Neuroscience, 2014, 15, .	1.9	4
31	Modelling recurrent discharge in the spinal α-motoneuron: Reappraisal of the F wave. Clinical Neurophysiology, 2014, 125, 427-429.	1.5	11
32	Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific Reports, 2014, 4, 5489.	3.3	153
33	Selective modulation of chemical and electrical synapses of Helix neuronal networks during in vitro development. BMC Neuroscience, 2013, 14, 22.	1.9	14
34	Selective pharmacological manipulation of cortical–thalamic co-cultures in a dual-compartment device. Journal of Neuroscience Methods, 2013, 214, 1-8.	2.5	30
35	In vitro homogeneous and heterogeneous interconnected neuronal cultures: Exploring expressed dynamics and functional connectivity. , 2013, , .		0
36	3D engineered neural networks coupled to Micro-Electrode Arrays: Development of an innovative in-vitro experimental model for neurophysiological studies. , 2013, , .		0

#	Article	IF	CITATIONS
37	Charge sensing by organic charge-modulated field effect transistors: application to the detection of bio-related effects. Journal of Materials Chemistry B, 2013, 1, 3811.	5.8	35
38	A neuro-robotic system to investigate the computational properties of neuronal assemblies. , 2012, , .		1
39	Modular Neuronal Assemblies Embodied in a Closed-Loop Environment: Toward Future Integration of Brains and Machines. Frontiers in Neural Circuits, 2012, 6, 99.	2.8	59
40	Functional connectivity and dynamics of cortical–thalamic networks co-cultured in a dual compartment device. Journal of Neural Engineering, 2012, 9, 036010.	3.5	69
41	Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays. Journal of Neuroscience Methods, 2012, 207, 161-171.	2.5	60
42	A "Spike-Based―Grammar Underlies Directional Modification in Network Connectivity: Effect on Bursting Activity and Implications for Bio-Hybrids Systems. PLoS ONE, 2012, 7, e49299.	2.5	12
43	Investigation of Extracellular Signal Shapes Recorded by Planar Metal Microelectrodes Covered With Carbon Nanotubes: Modeling and Simulations. IEEE Nanotechnology Magazine, 2011, 10, 1328-1336.	2.0	2
44	Development of Micro-Electrode Array Based Tests for Neurotoxicity: Assessment of Interlaboratory Reproducibility with Neuroactive Chemicals. Frontiers in Neuroengineering, 2011, 4, 4.	4.8	113
45	A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes. Biomedical Microdevices, 2011, 13, 613-621.	2.8	31
46	Dual-compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture. Frontiers in Neuroengineering, 2011, 4, 13.	4.8	57
47	An experimental approach towards the development of an in vitro cortical-thalamic co-culture model. , 2011, 2011, 648-51.		5
48	A Novel AFM-MEA Platform for Studying the Real Time Mechano-Electrical Behavior of Cardiac Myocytes. Materials Research Society Symposia Proceedings, 2010, 1261, 40901.	0.1	0
49	A simulated neuro-robotic environment for bi-directional closed-loop experiments. Paladyn, 2010, 1, .	2.7	8
50	A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience, 2010, 29, 213-229.	1.0	95
51	Investigating neuronal activity by SPYCODE multi-channel data analyzer. Neural Networks, 2010, 23, 685-697.	5.9	116
52	Quantitative Estimation of the Nonstationary Behavior of Neural Spontaneous Activity. Computational Intelligence and Neuroscience, 2010, 2010, 1-9.	1.7	0
53	Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience, 2010, 165, 692-704.	2.3	66
54	Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects. Frontiers in Neuroengineering, 2010, 3, 4.	4.8	34

Sergio Martinoia

#	Article	IF	CITATIONS
55	Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. Journal of Neural Engineering, 2010, 7, 056001.	3.5	57
56	Modeling the neuron-to-carbon nanotubes interface. , 2009, , .		0
57	Interaction of electrically evoked responses in networks of dissociated cortical neurons. Physical Review E, 2009, 80, 031906.	2.1	12
58	Imaging extracellular neuronal signaling on high resolution microelectrode arrays (MEAs) Hippocampal cultures coupled with a high resolution neuroelectronic interface. , 2009, , .		3
59	Opposite Changes in Glutamatergic and GABAergic Transmission Underlie the Diffuse Hyperexcitability of Synapsin l–Deficient Cortical Networks. Cerebral Cortex, 2009, 19, 1422-1439.	2.9	106
60	Neural Signal Manager: a collection of classical and innovative tools for multiâ€channel spike train analysis. International Journal of Adaptive Control and Signal Processing, 2009, 23, 999-1013.	4.1	10
61	Realâ€time signal processing for highâ€density microelectrode array systems. International Journal of Adaptive Control and Signal Processing, 2009, 23, 983-998.	4.1	10
62	Low-noise low-power CMOS preamplifier for multisite extracellular neuronal recordings. Microelectronics Journal, 2009, 40, 1779-1787.	2.0	8
63	A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of Neuroscience Methods, 2009, 177, 241-249.	2.5	194
64	Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures. Journal of Neuroscience Methods, 2009, 177, 386-396.	2.5	62
65	Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on A Chip, 2009, 9, 2644.	6.0	300
66	Helix neuronal ensembles with controlled cell type composition and placement develop functional polysynaptic circuits on Micro-Electrode Arrays. Neuroscience Letters, 2009, 467, 121-126.	2.1	15
67	A novel algorithm for burst and network burst detection Application to wild-type and SynI knockout mice cultures for the study of epileptogenesis. , 2009, , .		1
68	Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. PLoS ONE, 2009, 4, e6482.	2.5	160
69	Network plasticity in cortical assemblies. European Journal of Neuroscience, 2008, 28, 221-237.	2.6	115
70	Large-Scale, High-Resolution Data Acquisition System for Extracellular Recording of Electrophysiological Activity. IEEE Transactions on Biomedical Engineering, 2008, 55, 2064-2073.	4.2	117
71	Low-Frequency Stimulation Induces Stable Transitions in Stereotypical Activity in Cortical Networks. Biophysical Journal, 2008, 94, 5028-5039.	0.5	59
72	Modelling small-patterned neuronal networks coupled to microelectrode arrays. Journal of Neural Engineering, 2008, 5, 350-359.	3.5	10

#	Article	IF	CITATIONS
73	Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience, 2008, 153, 1354-1369.	2.3	331
74	Modeling the Neuron-Carbon Nanotube-ISFET Junction to Investigate the Electrophysiological Neuronal Activity. Nano Letters, 2008, 8, 4433-4440.	9.1	30
75	Motivations and APS-based solution for high-resolution extracellular recording from in-vitro neuronal networks. , 2007, , .		2
76	High-resolution MEA platform for in-vitro electrogenic cell networks imaging. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6086-9.	0.5	4
77	Activity modulation elicited by electrical stimulation in networks of dissociated cortical neurons. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3008-11.	0.5	4
78	NETWORK DYNAMICS AND SYNCHRONOUS ACTIVITY IN CULTURED CORTICAL NEURONS. International Journal of Neural Systems, 2007, 17, 87-103.	5.2	167
79	An automated microdrop delivery system for neuronal network patterning on microelectrode arrays. Journal of Neuroscience Methods, 2007, 161, 88-95.	2.5	35
80	Multi-program approach for simulating recorded extracellular signals generated by neurons coupled to microelectrode arrays. Neurocomputing, 2007, 70, 2467-2476.	5.9	23
81	Modeling and simulation of silicon neuron-to-ISFET junction. Journal of Computational Electronics, 2007, 6, 431-437.	2.5	3
82	A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B: Chemical, 2006, 114, 530-541.	7.8	91
83	Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 2006, 1093, 41-53.	2.2	346
84	Effects of NMDA and non-NMDA receptors antagonists on the dynamic behavior of cultured cortical networks. Neurocomputing, 2006, 69, 1897-1903.	5.9	6
85	Modeling ISFET microsensor and ISFET-based microsystems: a review. Sensors and Actuators B: Chemical, 2005, 105, 14-27.	7.8	60
86	Electrophysiological activity modulation by chemical stimulation in networks of cortical neurons coupled to microelectrode arrays: A biosensor for neuropharmacological applications. Sensors and Actuators B: Chemical, 2005, 108, 589-596.	7.8	21
87	In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosensors and Bioelectronics, 2005, 20, 2071-2078.	10.1	70
88	Coding and decoding of information in a bi-directional neural interface. Neurocomputing, 2005, 65-66, 783-792.	5.9	21
89	Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 2005, 65-66, 653-662.	5.9	124
90	Integrated low noise low power interface for neural bio-potentials recording and conditioning. , 2005, , .		3

6

#	Article	IF	CITATIONS
91	Towards an embodied in vitro electrophysiology: the NeuroBIT project. Neurocomputing, 2004, 58-60, 1065-1072.	5.9	32
92	Cultured Neurons Coupled to Microelectrode Arrays: Circuit Models, Simulations and Experimental Data. IEEE Transactions on Biomedical Engineering, 2004, 51, 859-864.	4.2	73
93	Correction to "Effect of Skull Resistivity on the Spatial Resolutions of EEG and MEG― IEEE Transactions on Biomedical Engineering, 2004, 51, 1295-1295.	4.2	0
94	ISFET–neuron junction: circuit models and extracellular signal simulations. Biosensors and Bioelectronics, 2004, 19, 1487-1496.	10.1	25
95	Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on solid state sensor-array. Biosensors and Bioelectronics, 2003, 18, 621-626.	10.1	56
96	Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Biosensors and Bioelectronics, 2003, 18, 627-634.	10.1	117
97	Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations. Biosensors and Bioelectronics, 2001, 16, 1043-1050.	10.1	87
98	A behavioral macromodel of the ISFET in SPICE. Sensors and Actuators B: Chemical, 2000, 62, 182-189.	7.8	157
99	An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices1This paper was presented at the Fifth World Congress on Biosensors, Berlin, Germany, 3–5 June 1998.1. Biosensors and Bioelectronics, 1999, 14, 61-65.	10.1	57
100	A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates. Journal of Neuroscience Methods, 1999, 87, 35-44.	2.5	55
101	Coupling of Organotypic Brain Slice Cultures to Silicon-Based Arrays of Electrodes. Methods, 1999, 18, 160-172.	3.8	35
102	Temperature effects on the ISFET behaviour: simulations and measurements. Sensors and Actuators B: Chemical, 1998, 50, 60-68.	7.8	40
103	Analysis of the signals generated by networks of neurons coupled to planar arrays of microtransducers in simulated experiments. Biosensors and Bioelectronics, 1998, 13, 601-612.	10.1	20
104	Modelling the ISFET behaviour under temperature variations using BIOSPICE. Electronics Letters, 1996, 32, 936.	1.0	7
105	The neuron-transistor junction: linking equivalent electric circuit models to microscopic descriptions. Thin Solid Films, 1996, 284-285, 772-775.	1.8	10
106	Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sensors and Actuators B: Chemical, 1996, 32, 41-48.	7.8	47
107	pH-dependent charge density at the insulator-electrolyte interface probed by a scanning force microscope. Biosensors and Bioelectronics, 1996, 11, 1009-1017.	10.1	31
108	Optimization of the interaction between ethylenevinyl alcohol copolymers and human endothelial cells. Journal of Materials Science: Materials in Medicine, 1996, 7, 8-12.	3.6	5

#	Article	IF	CITATIONS
109	The neuro-electronic interface: measurements and model predictions. Journal of Materials Science: Materials in Medicine, 1996, 7, 363-366.	3.6	3
110	An H+-FET-based system for on-line detection of microorganisms in waters. Sensors and Actuators B: Chemical, 1996, 34, 245-251.	7.8	9
111	Coupling of Networks of Neurons to Substrate Planar Microtransducers. , 1996, , 251-264.		2
112	Interfacing cultured neurons to planar substrate microelectrodes: characterization of the neuron-to-microelectrode junction. Bioelectrochemistry, 1995, 38, 255-265.	1.0	49
113	An array of H+ FETs for space-resolved electrochemical measurements in microenvironments. Sensors and Actuators B: Chemical, 1995, 24, 218-221.	7.8	5
114	Silicon neuron simulation with SPICE: tool for neurobiology and neural networks. Medical and Biological Engineering and Computing, 1995, 33, 533-536.	2.8	6
115	Realistic simulations of neurons by means of an ad hoc modified version of SPICE. Biological Cybernetics, 1994, 71, 137-145.	1.3	19
116	A general-purpose system for long-term recording from a microelectrode array coupled to excitable cells. Journal of Neuroscience Methods, 1993, 48, 115-121.	2.5	33
117	Modeling the neuron-microtransducer junction: from extracellular to patch recording. IEEE Transactions on Biomedical Engineering, 1993, 40, 35-41.	4.2	87
118	Transduction Mechanisms From Biological Membranes to Silicon Sensors : Modelling and Computer Simulations. Molecular Crystals and Liquid Crystals, 1993, 236, 105-112.	0.3	0
119	Interfacing biological membranes to silicon devices. , 1992, , .		0
120	Light-addressable chemical sensors: Modelling and computer simulations. Sensors and Actuators B: Chemical, 1992, 7, 484-487.	7.8	25
121	Modelling non-ideal behaviours in H+-sensitive FETs with SPICE. Sensors and Actuators B: Chemical, 1992, 7, 561-564.	7.8	16
122	An ISFET model for CAD applications. Sensors and Actuators B: Chemical, 1992, 8, 261-265.	7.8	7
123	Modeling H/sup +/-sensitive FETs with SPICE. IEEE Transactions on Electron Devices, 1992, 39, 813-819.	3.0	106
124	Computer simulations of the responses of passive and active integrated microbiosensors to cell activity. Sensors and Actuators B: Chemical, 1991, 4, 261-265.	7.8	12
125	Cell metabolism measurements in culture via microelectronic biosensors. Cytotechnology, 1991, 5, 57-58.	1.6	3
126	Detection of cell activity via ISFET devices: Modelling and computer simulations. Sensors and Actuators B: Chemical, 1990, 1, 373-379.	7.8	8

#	Article	IF	CITATIONS
127	High resolution electrophysiological activity imaging of in-vitro neuronal networks. , 0, , .		12
128	Modulating neural networks dynamics: multi-site electrical stimulation of in-vitro cortical neurons coupled to MEA devices. , 0, , .		0
129	Towards Natural Computation: Reactive Control of a Mobile Robot by a Population of Cultured Neurons. , 0, , .		Ο
130	Modulation of Electrophysiological Activity in Neural Networks: Toward a Bioartificial Living System. , 0, , 29-40.		0