Chandu V V Muralee Gopi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422646/publications.pdf

Version: 2024-02-01

80 papers

3,038 citations

35 h-index 51 g-index

82 all docs

82 docs citations

times ranked

82

3013 citing authors

#	Article	IF	CITATIONS
1	Synthesis and Blue Emission Properties of Co-Doped CdS Semiconductor Nanoparticles. Current Applied Materials, 2022, $1,\ldots$	0.5	О
2	Template and binder free 1D cobalt nickel hydrogen phosphate electrode materials for supercapacitor application. Journal of Industrial and Engineering Chemistry, 2022, 106, 328-339.	5.8	27
3	Designing nanosheet manganese cobaltate@manganese cobaltate nanosheet arrays as a battery-type electrode material towards high-performance supercapacitors. Journal of Energy Storage, 2022, 47, 103603.	8.1	6
4	Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. Nanomaterials, 2022, 12, 1511.	4.1	47
5	Influence of temperature on the magnetic properties of Mn3O4 nanowires. Current Chemistry Letters, 2021, , 203-208.	1.6	3
6	Binder-free hierarchical core-shell-like CoMn2O4@MnS nanowire arrays on nickel foam as a battery-type electrode material for high-performance supercapacitors. Journal of Energy Storage, 2021, 36, 102377.	8.1	41
7	Facile Fabrication of MnCo2O4/NiO Flower-Like Nanostructure Composites with Improved Energy Storage Capacity for High-Performance Supercapacitors. Nanomaterials, 2021, 11, 1424.	4.1	20
8	Novel porous carbon electrode derived from hypercross-linked polymer of poly(divinylbenzene-co-vinyl benzyl chloride) for supercapacitor applications. Journal of Energy Storage, 2021, 43, 103287.	8.1	17
9	Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chemical Engineering Journal, 2020, 381, 122640.	12.7	133
10	Effect of erbium on the structural, morphological, and optical properties of SnO2 thin films deposited by spray pyrolysis. Optik, 2020, 202, 163596.	2.9	20
11	Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. Journal of Energy Storage, 2020, 27, 101035.	8.1	137
12	Influence of annealing temperature in nitrogen doped porous carbon balls derived from hypercross-linked polymer of anthracene for supercapacitor applications. Journal of Energy Storage, 2020, 28, 101196.	8.1	36
13	One-step facile synthesis of dense cloud-like tiny bundled nanoparticles of CuS nanostructures as an efficient electrode material for high-performance supercapacitors. Journal of Energy Storage, 2020, 27, 101148.	8.1	11
14	Facile synthesis of nanoparticles anchored on honeycomb-like MnCo2S4 nanostructures as a binder-free electroactive material for supercapacitors. Journal of Energy Storage, 2020, 27, 101159.	8.1	23
15	Novel porous carbon material derived from hypercross-linked polymer of p-xylene for supercapacitors electrode. Materials Letters, 2020, 263, 127222.	2.6	25
16	Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 975-982.	2.2	10
17	Binder-free honeycomb-like FeMoO4 nanosheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. Journal of Energy Storage, 2020, 27, 101055.	8.1	44
18	A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. Journal of Energy Storage, 2020, 32, 101831.	8.1	102

#	Article	IF	CITATIONS
19	A Comprehensive Review of Li-lon Battery Materials and Their Recycling Techniques. Electronics (Switzerland), 2020, 9, 1161.	3.1	111
20	Metal sensing-carbon dots loaded TiO2-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture. Scientific Reports, 2020, 10, 12883.	3.3	26
21	Novel 13X Zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 28337-28349.	7.1	38
22	Hydrothermal synthesis, crystal and electronic structure of a new hydrated borate CsKB4O5(OH)4·2H2O. Materials Express, 2020, 10, 543-550.	0.5	1
23	Facile synthesis of hierarchical flower-like NiMoO4-CoMoO4 nanosheet arrays on nickel foam as an efficient electrode for high rate hybrid supercapacitors. Journal of Energy Storage, 2020, 30, 101550.	8.1	64
24	Novel electrode material derived from porous polymeric organic framework of phloroglucinol and terephthaldehyde for symmetric supercapacitors. Journal of Energy Storage, 2020, 28, 101283.	8.1	39
25	One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Applied Sciences, 2020, 2, 1.	2.9	9
26	Facile synthesis of highly efficient V2O5@NiCo2O4 as battery-type electrode material for high-performance electrochemical supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13519-13524.	2.2	9
27	Novel composite electrode material derived from hypercross-linked polymer of pyrene and polyaniline for symmetric supercapacitor. Materials Letters, 2019, 257, 126732.	2.6	22
28	Morphology-dependent binder-free CuNiO2electrode material with excellent electrochemical performances for supercapacitors. Journal of Energy Storage, 2019, 26, 101037.	8.1	14
29	One-pot synthesis of copper oxide–cobalt oxide core–shell nanocactus-like heterostructures as binder-free electrode materials for high-rate hybrid supercapacitors. Materials Today Energy, 2019, 14, 100358.	4.7	24
30	Effect of the cobalt and zinc ratio on the preparation of zeolitic imidazole frameworks (ZIFs): synthesis, characterization and supercapacitor applications. Dalton Transactions, 2019, 48, 14808-14819.	3.3	39
31	Microflower-like nickel sulfide-lead sulfide hierarchical composites as binder-free electrodes for high-performance supercapacitors. Journal of Energy Storage, 2019, 26, 100925.	8.1	35
32	Facile synthesis of flexible and binder-free dandelion flower-like CuNiO2 nanostructures as advanced electrode material for high-performance supercapacitors. Journal of Energy Storage, 2019, 26, 100914.	8.1	18
33	Polyaniline–13X zeolite compositeâ€supported platinum electrocatalysts for direct methanol fuel cell applications. Polymer International, 2019, 68, 929-935.	3.1	8
34	One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material. Electrochimica Acta, 2019, 305, 467-473.	5.2	53
35	Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6374-6386.	10.3	59
36	Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry, 2019, 5, 67.	2.4	92

#	Article	IF	Citations
37	Improved light-harvesting and suppressed charge recombination by introduction of a nanograss-like SnO ₂ interlayer for efficient CdS quantum dot sensitized solar cells. RSC Advances, 2019, 9, 38047-38054.	3.6	5
38	Facile synthesis of a NiO/NiS hybrid and its use as an efficient electrode material for supercapacitor applications. New Journal of Chemistry, 2018, 42, 5309-5313.	2.8	52
39	One-pot hydrothermal synthesis of tungsten diselenide/reduced graphene oxide composite as advanced electrode materials for supercapacitors. Materials Letters, 2018, 223, 57-60.	2.6	35
40	Facile synthesis of hierarchical ZnMn ₂ O ₄ @ZnFe ₂ O ₄ microspheres on nickel foam for high-performance supercapacitor applications. New Journal of Chemistry, 2018, 42, 2964-2969.	2.8	34
41	Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe ₂ microspheres decorated with CoFe ₂ Se ₄ nanorods. Journal of Materials Chemistry A, 2018, 6, 7439-7448.	10.3	154
42	CNT@rGO@MoCuSe Composite as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10036-10042.	8.0	55
43	Facile synthesis of unique diamond-like structured CdMn2O4@CdMn2O4 composite material for high performance supercapacitors. Materials Letters, 2018, 210, 143-147.	2.6	8
44	One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials. Applied Surface Science, 2018, 435, 462-467.	6.1	27
45	Construction of novel nanocomposite ZnO@CoFe ₂ O ₄ microspheres grown on nickel foam for high performance electrochemical supercapacitors. Analytical Methods, 2018, 10, 223-229.	2.7	23
46	Design of Supercapacitor for Electric and Hybrid Vehicles : Supercapacitor. , 2018, , .		4
47	Hierarchical nanostructured MnCo ₂ O ₄ –NiCo ₂ O ₄ composites as innovative electrodes for supercapacitor applications. New Journal of Chemistry, 2018, 42, 17190-17194.	2.8	43
48	Facile preparation of nanoflake MnNi ₂ O ₄ â€"PbS nanoparticle composites on Ni foam as advanced electrode materials for supercapacitors. New Journal of Chemistry, 2018, 42, 14157-14162.	2.8	12
49	A Novel Off-Grid Optimal Hybrid Energy System for Rural Electrification of Tanzania Using a Closed Loop Cooled Solar System. Energies, 2018, 11, 905.	3.1	20
50	Development of Novel and Ultra-High-Performance Supercapacitor Based on a Four Layered Unique Structure. Electronics (Switzerland), 2018, 7, 121.	3.1	10
51	Layer by layer approach to enhance capacitance using metal sulfides for supercapacitor applications. Materials Letters, 2018, 231, 64-67.	2.6	15
52	NiMoO ₄ @NiWO ₄ honeycombs as a high performance electrode material for supercapacitor applications. Dalton Transactions, 2018, 47, 9057-9063.	3.3	68
53	Hydrothermal synthesis of MoS ₂ and WS ₂ nanoparticles for high-performance supercapacitor applications. New Journal of Chemistry, 2018, 42, 12357-12360.	2.8	59
54	High performance of TiO ₂ /CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer. New Journal of Chemistry, 2017, 41, 1914-1917.	2.8	43

#	Article	IF	Citations
55	Enhanced light harvesting and charge recombination control with TiO2/PbCdS/CdS based quantum dot-sensitized solar cells. Journal of Electroanalytical Chemistry, 2017, 788, 131-136.	3.8	24
56	Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Scientific Reports, 2017, 7, 46519.	3.3	134
57	Efficient electron transfer and reduced recombination with Nd:YAG laser scribing for high-efficiency quantum dot-sensitized solar cells. Optics and Laser Technology, 2017, 94, 290-295.	4.6	7
58	Facile one-step synthesis of a composite CuO/Co ₃ O ₄ electrode material on Ni foam for flexible supercapacitor applications. New Journal of Chemistry, 2017, 41, 5493-5497.	2.8	47
59	Influence of solvents in the preparation of cobalt sulfide for supercapacitors. Royal Society Open Science, 2017, 4, 170427.	2.4	22
60	A hydrothermal reaction combined with a post anion-exchange reaction of hierarchically nanostructured NiCo ₂ 5 ₄ for high-performance QDSSCs and supercapacitors. New Journal of Chemistry, 2017, 41, 10037-10047.	2.8	25
61	Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors. Dalton Transactions, 2017, 46, 12876-12883.	3.3	38
62	Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors. Dalton Transactions, 2016, 45, 12362-12371.	3.3	46
63	ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 8161-8171.	10.3	59
64	Controlled growth of a nanoplatelet-structured copper sulfide thin film as a highly efficient counter electrode for quantum dot-sensitized solar cells. RSC Advances, 2016, 6, 45809-45818.	3.6	12
65	Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime. Dalton Transactions, 2016, 45, 8447-8457.	3.3	44
66	Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO ₂ /ZnS/CdS/ZnS heterostructure. Dalton Transactions, 2016, 45, 12914-12923.	3.3	37
67	Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition. Dalton Transactions, 2016, 45, 3450-3463.	3.3	25
68	Time Varied Morphology Controllable Fabrication of NiS Nanosheets Structured Thin Film and its Application as a Counter Electrode for QDSSC. Journal of Physical Chemistry C, 2015, 119, 11419-11429.	3.1	35
69	Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells. Dalton Transactions, 2015, 44, 11340-11351.	3.3	35
70	One-step synthesis of solution processed time-dependent highly efficient and stable PbS counter electrodes for quantum dot-sensitized solar cells. RSC Advances, 2015, 5, 107522-107532.	3.6	28
71	A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode. Dalton Transactions, 2015, 44, 2447-2455.	3.3	30
72	Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale, 2015, 7, 12552-12563.	5.6	80

#	ARTICLE	IF	CITATIONS
73	The effect of TiO ₂ nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance. Dalton Transactions, 2015, 44, 12852-12862.	3.3	21
74	Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell. Journal of Applied Physics, 2015, 117, .	2.5	13
75	Solution-processed morphology-controllable nanosphere structured highly efficient and stable nickel sulfide counter electrodes for dye- and quantum dot-sensitized solar cells. New Journal of Chemistry, 2015, 39, 9575-9585.	2.8	17
76	Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition. Dalton Transactions, 2015, 44, 19330-19343.	3.3	37
77	Solution processed low-cost and highly electrocatalytic composite NiS/PbS nanostructures as a novel counter-electrode material for high-performance quantum dot-sensitized solar cells with improved stability. Journal of Materials Chemistry C, 2015, 3, 12514-12528.	5.5	53
78	Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. RSC Advances, 2015, 5, 2963-2967.	3.6	32
79	A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Transactions, 2015, 44, 630-638.	3.3	67
80	Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 4281-4286.	2.0	34