
Evgenios Agathokleous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 2020, 735, 139542.	8.0	516
2	Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 2020, 6, eabc1176.	10.3	181
3	Urban population exposure to air pollution in Europe over the last decades. Environmental Sciences Europe, 2021, 33, 28.	5.5	148
4	Hormesis: A Compelling Platform for Sophisticated Plant Science. Trends in Plant Science, 2019, 24, 318-327.	8.8	145
5	Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants?. Science of the Total Environment, 2020, 726, 138637.	8.0	141
6	Hormesis: Highly Generalizable and Beyond Laboratory. Trends in Plant Science, 2020, 25, 1076-1086.	8.8	128
7	Should we see urban trees as effective solutions to reduce increasing ozone levels in cities?. Environmental Pollution, 2018, 243, 163-176.	7.5	119
8	Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety. Ecotoxicology and Environmental Safety, 2018, 148, 1042-1053.	6.0	117
9	The two faces of nanomaterials: A quantification of hormesis in algae and plants. Environment International, 2019, 131, 105044.	10.0	104
10	Hormesis: The dose response for the 21st century: The future has arrived. Toxicology, 2019, 425, 152249.	4.2	103
11	Estimating the range of the maximum hormetic stimulatory response. Environmental Research, 2019, 170, 337-343.	7.5	102
12	Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Science of the Total Environment, 2019, 649, 61-74.	8.0	97
13	A global environmental health perspective and optimisation of stress. Science of the Total Environment, 2020, 704, 135263.	8.0	97
14	Micro/nanoplastics effects on organisms: A review focusing on â€~dose'. Journal of Hazardous Materials, 2021, 417, 126084.	12.4	96
15	Ozone weekend effect in cities: Deep insights for urban air pollution control. Environmental Research, 2020, 191, 110193.	7.5	95
16	Ozone pollution threatens the production of major staple crops in East Asia. Nature Food, 2022, 3, 47-56.	14.0	93
17	Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 2019, 30, 1569-1580.	3.6	82
18	Hormetic dose responses induced by lanthanum in plants. Environmental Pollution, 2019, 244, 332-341.	7.5	81

#	Article	IF	CITATIONS
19	Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective. Environment International, 2018, 120, 489-495.	10.0	78
20	A Review Study on Past 40ÂYears of Research on Effects of Tropospheric O3 on Belowground Structure, Functioning, and Processes of Trees: a Linkage with Potential Ecological Implications. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	75
21	Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. Environmental Research, 2018, 165, 274-278.	7.5	73
22	The rare earth element (REE) lanthanum (La) induces hormesis in plants. Environmental Pollution, 2018, 238, 1044-1047.	7.5	71
23	Ecological risks in a â€~plastic' world: A threat to biological diversity?. Journal of Hazardous Materials, 2021, 417, 126035.	12.4	68
24	Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Science of the Total Environment, 2022, 807, 150992.	8.0	59
25	Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. Ecotoxicology and Environmental Safety, 2017, 142, 530-537.	6.0	54
26	Nano-pesticides: A great challenge for biodiversity? The need for a broader perspective. Nano Today, 2020, 30, 100808.	11.9	53
27	Tropospheric O ₃ , the nightmare of wild plants: a review study. J Agricultural Meteorology, 2015, 71, 142-152.	1.5	50
28	Hormetic dose responses induced by antibiotics in bacteria: A phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon. Science of the Total Environment, 2021, 798, 149255.	8.0	49
29	Hormesis can enhance agricultural sustainability in a changing world. Global Food Security, 2019, 20, 150-155.	8.1	47
30	Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environmental Science and Pollution Research, 2014, 21, 13560-13571.	5.3	43
31	Temperature-induced hormesis in plants. Journal of Forestry Research, 2019, 30, 13-20.	3.6	42
32	Ethylene-di-urea (EDU), an effective phytoproctectant against O ₃ deleterious effects and a valuable research tool. J Agricultural Meteorology, 2015, 71, 185-195.	1.5	40
33	New insights into the role of melatonin in plants and animals. Chemico-Biological Interactions, 2019, 299, 163-167.	4.0	40
34	The rise and fall of photosynthesis: hormetic dose response in plants. Journal of Forestry Research, 2021, 32, 889-898.	3.6	40
35	Accumulator plants and hormesis. Environmental Pollution, 2021, 274, 116526.	7.5	39
36	The first toxicological study of the antiozonant and research tool ethylene diurea (EDU) using a Lemna minor L. bioassay: Hints to its mode of action. Environmental Pollution, 2016, 213, 996-1006.	7.5	37

#	Article	IF	CITATIONS
37	A Review Study on Ozone Phytotoxicity Metrics for Setting Critical Levels in Asia. Asian Journal of Atmospheric Environment, 2018, 12, 1-16.	1.1	37
38	Olive Oil for Dressing Plant Leaves so as to Avoid O3 Injury. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	35
39	A quantitative assessment of hormetic responses of plants to ozone. Environmental Research, 2019, 176, 108527.	7.5	35
40	Does Green Tea Induce Hormesis?. Dose-Response, 2020, 18, 155932582093617.	1.6	34
41	Ozone will remain a threat for plants independently of nitrogen load. Functional Ecology, 2019, 33, 1854-1870.	3.6	33
42	Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. Science of the Total Environment, 2022, 820, 153116.	8.0	33
43	Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environmental Pollution, 2015, 197, 247-255.	7.5	32
44	Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health and Sustainability, 2021, 7, .	3.1	32
45	Agronomic Practices to Increase the Yield and Quality of Common Bean (Phaseolus vulgaris L.): A Systematic Review. Agronomy, 2022, 12, 271.	3.0	32
46	Effects of CO ₂ and O ₃ on the interaction between root of woody plants and ectomycorrhizae. J Agricultural Meteorology, 2016, 72, 95-105.	1.5	31
47	Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Science of the Total Environment, 2019, 658, 1265-1277.	8.0	31
48	Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Science of the Total Environment, 2021, 754, 142134.	8.0	31
49	Strategic roadmap to assess forest vulnerability under air pollution and climate change. Global Change Biology, 2022, 28, 5062-5085.	9.5	31
50	Commentary: EPA's proposed expansion of dose-response analysis is a positive step towards improving its ecological risk assessment. Environmental Pollution, 2019, 246, 566-570.	7.5	30
51	Environmental toxicology and ecotoxicology: How clean is clean? Rethinking dose-response analysis. Science of the Total Environment, 2020, 746, 138769.	8.0	30
52	Behavioral impacts of a mixture of six pesticides on rats. Science of the Total Environment, 2020, 727, 138491.	8.0	30
53	Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. Environmental Research, 2021, 200, 111746.	7.5	29

Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50.62 Td (CO 1.5 28

#	Article	IF	CITATIONS
55	Growth and photosynthetic response of two larches exposed to O ₃ mixing ratios ranging from preindustrial to near future. Photosynthetica, 2018, 56, 901-910.	1.7	28
56	Ferulic acid and hormesis: Biomedical and environmental implications. Mechanisms of Ageing and Development, 2021, 198, 111544.	4.6	28
57	A gift from parent to offspring: transgenerational hormesis. Trends in Plant Science, 2021, 26, 1098-1100.	8.8	28
58	High doses of ethylene diurea (EDU) are not toxic to willow and act as nitrogen fertilizer. Science of the Total Environment, 2016, 566-567, 841-850.	8.0	27
59	Building Biological Shields via Hormesis. Trends in Pharmacological Sciences, 2019, 40, 8-10.	8.7	27
60	Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: An experimental case study and a literature meta-analysis. Science of the Total Environment, 2020, 710, 136379.	8.0	26
61	Theodosius Dobzhansky's view on biology and evolution v.2.0: "Nothing in biology makes sense except in light of evolution and evolution's dependence on hormesis-mediated acquired resilience that optimizes biological performance and numerous diverse short and longer term protective strategiesâ€. Environmental Research, 2020, 186, 109559.	7.5	26
62	Ozone disrupts the communication between plants and insects in urban and suburban areas: an updated insight on plant volatiles. Journal of Forestry Research, 2021, 32, 1337-1349.	3.6	26
63	Hydrocarbon-induced hormesis: 101 years of evidence at the margin?. Environmental Pollution, 2020, 265, 114846.	7.5	25
64	Stem and crown growth of Japanese larch and its hybrid F1 grown in two soils and exposed to two free-air O3 regimes. Environmental Science and Pollution Research, 2017, 24, 6634-6647.	5.3	24
65	Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context. Environmental Pollution, 2018, 239, 318-321.	7.5	24
66	Ozone-induced impairment of night-time stomatal closure in O3-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. Science of the Total Environment, 2019, 692, 713-722.	8.0	24
67	Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb. Science of the Total Environment, 2021, 783, 147494.	8.0	24
68	Hormesis: A General Biological Principle. Chemical Research in Toxicology, 2022, 35, 547-549.	3.3	24
69	Hormesis: Transforming disciplines that rely on the dose response. IUBMB Life, 2022, 74, 8-23.	3.4	23
70	Luteolin and hormesis. Mechanisms of Ageing and Development, 2021, 199, 111559.	4.6	23
71	Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Science of the Total Environment, 2022, 806, 151341.	8.0	23
72	The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. Current Opinion in Toxicology, 2022, 29, 1-9.	5.0	23

#	Article	IF	CITATIONS
73	Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O3-induced injury. Science of the Total Environment, 2016, 573, 1053-1062.	8.0	22
74	Plant susceptibility to ozone: A tower of Babel?. Science of the Total Environment, 2020, 703, 134962.	8.0	22
75	Evaluation of Di-1-p-Menthene as Antiozonant on Bel-W3 Tobacco Plants, as Compared with Ethylenediurea. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	21
76	Effects of ozone (O3) and ethylenediurea (EDU) on the ecological stoichiometry of a willow grown in a free-air exposure system. Environmental Pollution, 2018, 238, 663-676.	7.5	21
77	Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: The role of background Cd contamination and time as additional factors. Science of the Total Environment, 2021, 757, 143771.	8.0	21
78	Ozone alters the feeding behavior of the leaf beetle Agelastica coerulea (Coleoptera: Chrysomelidae) into leaves of Japanese white birch (Betula platyphylla var. japonica). Environmental Science and Pollution Research, 2017, 24, 17577-17583.	5.3	20
79	Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Scientific Reports, 2018, 8, 503.	3.3	20
80	On the Nonmonotonic, Hormetic Photoprotective Response of Plants to Stress. Dose-Response, 2019, 17, 155932581983842.	1.6	20
81	Disinfectant-induced hormesis: An unknown environmental threat of the application of disinfectants to prevent SARS-CoV-2 infection during the COVID-19 pandemic?. Environmental Pollution, 2022, 292, 118429.	7.5	20
82	Challenges, gaps and opportunities in investigating the interactions of ozone pollution and plant ecosystems. Science of the Total Environment, 2020, 709, 136188.	8.0	19
83	Integrated assessment of ambient ozone phytotoxicity in Greece's Tripolis Plateau. J Agricultural Meteorology, 2015, 71, 55-64.	1.5	18
84	Effects of simulated nitrogen deposition on ectomycorrhizae community structure in hybrid larch and its parents grown in volcanic ash soil: The role of phosphorous. Science of the Total Environment, 2018, 618, 905-915.	8.0	17
85	Stress response and population dynamics: Is Allee effect hormesis?. Science of the Total Environment, 2019, 682, 623-628.	8.0	17
86	Nonlinear responses of foliar phenylpropanoids to increasing O3 exposure: Ecological implications in a Populus model system. Science of the Total Environment, 2021, 767, 144358.	8.0	17
87	Modeling daily global solar radiation using only temperature data: Past, development, and future. Renewable and Sustainable Energy Reviews, 2022, 163, 112511.	16.4	17
88	Foliar chemical composition of two oak species grown in a free-air enrichment system with elevated O ₃ and CO ₂ . J Agricultural Meteorology, 2016, 72, 50-58.	1.5	16
89	Systemic Herbicide 2,4-Dichlorophenoxyacetic Acid Is Another Hormetin: What Does It Mean for Agriculture and the Environment?. Journal of Agricultural and Food Chemistry, 2019, 67, 9695-9696.	5.2	16
90	Biphasic effect of abscisic acid on plants: an hormetic viewpoint. Botany, 2018, 96, 637-642.	1.0	15

6

#	Article	IF	CITATIONS
91	Ethylenediurea (EDU) effects on Japanese larch: an one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. Journal of Forestry Research, 2021, 32, 2047-2057.	3.6	15
92	Formaldehyde: Another hormesis-inducing chemical. Environmental Research, 2021, 199, 111395.	7.5	15
93	Forest management required for consistent carbon sink in China's forest plantations. Forest Ecosystems, 2021, 8, .	3.1	15
94	Metformin-enhances resilience via hormesis. Ageing Research Reviews, 2021, 71, 101418.	10.9	15
95	Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: implications for renewable biomass production. Journal of Forestry Research, 2022, 33, 397-422.	3.6	15
96	Application and further characterization of the snap bean S156/R123 ozone biomonitoring system in relation to ambient air temperature. Science of the Total Environment, 2017, 580, 1046-1055.	8.0	14
97	Effects of major vein blockage and aquaporin inhibition on leaf hydraulics and stomatal conductance. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190799.	2.6	14
98	Effects of ozone and ammonium sulfate on cauliflower: Emphasis on the interaction between plants and insect herbivores. Science of the Total Environment, 2019, 659, 995-1007.	8.0	14
99	Does Ozone Alter the Attractiveness of Japanese White Birch Leaves to the Leaf Beetle Agelastica coerulea via Changes in Biogenic Volatile Organic Compounds (BVOCs): An Examination with the Y-Tube Test. Forests, 2020, 11, 58.	2.1	14
100	Impacts of forest management intensity on carbon accumulation of China's forest plantations. Forest Ecology and Management, 2020, 472, 118252.	3.2	14
101	Fungicide-Induced Hormesis in Phytopathogenic Fungi: A Critical Determinant of Successful Agriculture and Environmental Sustainability. Journal of Agricultural and Food Chemistry, 2021, 69, 4561-4563.	5.2	14
102	Mastering the scientific peer review process: tips for young authors from a young senior editor. Journal of Forestry Research, 2022, 33, 1-20.	3.6	14
103	Springtime photoinhibition constrains regeneration of forest floor seedlings of Abies sachalinensis after a removal of canopy trees during winter. Scientific Reports, 2018, 8, 6310.	3.3	13
104	Ethylenediurea Induces Hormesis in Plants. Dose-Response, 2018, 16, 155932581876528.	1.6	13
105	Developing Ozone Risk Assessment for Larch Species. Frontiers in Forests and Global Change, 2020, 3, .	2.3	13
106	Pollen biology and hormesis: Pollen germination and pollen tube elongation. Science of the Total Environment, 2021, 762, 143072.	8.0	13
107	The role of bacterial communities in shaping Cd-induced hormesis in â€`living' soil as a function of land-use change. Journal of Hazardous Materials, 2021, 409, 124996.	12.4	13
108	The hormetic response of heart rate of fish embryos to contaminants – Implications for research and policy. Science of the Total Environment, 2022, 815, 152911.	8.0	13

#	Article	IF	CITATIONS
109	High nitrogen addition decreases the ozone flux by reducing the maximum stomatal conductance in poplar saplings. Environmental Pollution, 2021, 272, 115979.	7.5	12
110	Human dental pulp stem cells and hormesis. Ageing Research Reviews, 2022, 73, 101540.	10.9	12
111	Biochar application improves karstic lime soil physicochemical properties and enzymes activity and enhances sweet tea seedlings physiological performance. Science of the Total Environment, 2022, 830, 154815.	8.0	12
112	Growth and nutrition of Agelastica coerulea (Coleoptera: Chrysomelidae) larvae changed when fed with leaves obtained from an O3-enriched atmosphere. Environmental Science and Pollution Research, 2018, 25, 13186-13194.	5.3	11
113	Re-analysis of herbal extracts data reveals that inflammatory processes are mediated by hormetic mechanisms. Chemico-Biological Interactions, 2019, 314, 108844.	4.0	11
114	Leaf defense capacity of Japanese elm (Ulmus davidiana var. japonica) seedlings subjected to a nitrogen loading and insect herbivore dynamics in a free air ozone-enriched environment. Environmental Science and Pollution Research, 2020, 27, 3350-3360.	5.3	11
115	Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215.	4.1	11
116	Smoke-water commonly induces hormetic dose responses in plants. Science of the Total Environment, 2021, 765, 142776.	8.0	11
117	US EPA: Is there room to open a new window for evaluating potential sub-threshold effects and ecological risks?. Environmental Pollution, 2021, 284, 117372.	7.5	11
118	Ozone biomonitoring: A versatile tool for science, education and regulation. Current Opinion in Environmental Science and Health, 2020, 18, 7-13.	4.1	11
119	Estimating the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships in meta-data evaluations. MethodsX, 2021, 8, 101568.	1.6	11
120	Atmospheric Pb induced hormesis in the accumulator plant Tillandsia usneoides. Science of the Total Environment, 2022, 811, 152384.	8.0	11
121	Big data-based urban greenness in Chinese megalopolises and possible contribution to air quality control. Science of the Total Environment, 2022, 824, 153834.	8.0	11
122	European Union's imminent ban on glyphosate: Hormesis should be considered in new chemical screening and selection. Journal of Forestry Research, 2022, 33, 1103-1107.	3.6	11
123	Ethylenediurea (EDU) effects on hybrid larch saplings exposed to ambient or elevated ozone over three growing seasons. Journal of Forestry Research, 2022, 33, 117-135.	3.6	10
124	Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment. Journal of Hazardous Materials, 2021, 416, 125760.	12.4	10
125	Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. Environmental Research, 2021, 202, 111773.	7.5	10
126	Photosynthetic and Growth Responses in a Pioneer Tree (Japanese White Birch) and Competitive Perennial Weeds (Eupatorium sp.) Grown Under Different Regimes With Limited Water Supply to Waterlogging. Frontiers in Plant Science, 2022, 13, 835068.	3.6	10

#	Article	IF	CITATIONS
127	Transgenerational hormesis: What do parents sacrifice for their offspring?. Current Opinion in Environmental Science and Health, 2022, 29, 100380.	4.1	10
128	Impact of elevated CO2 on root traits of a sapling community of three birches and an oak: a free-air-CO2 enrichment (FACE) in northern Japan. Trees - Structure and Function, 2016, 30, 353-362.	1.9	9
129	Light Energy Partitioning under Various Environmental Stresses Combined with Elevated CO2 in Three Deciduous Broadleaf Tree Species in Japan. Climate, 2019, 7, 79.	2.8	9
130	Effects of soil nutrient availability and ozone on container-grown Japanese larch seedlings and role of soil microbes. Journal of Forestry Research, 2020, 31, 2295-2311.	3.6	9
131	Chloroquine commonly induces hormetic dose responses. Science of the Total Environment, 2021, 755, 142436.	8.0	9
132	Effects of elevated ozone on maize under varying soil nitrogen levels: Biomass, nitrogen and carbon, and their allocation to kernel. Science of the Total Environment, 2021, 765, 144332.	8.0	9
133	Dose response and risk assessment: Evolutionary foundations. Environmental Pollution, 2022, 309, 119787.	7.5	9
134	Root Production of Fagus crenata Blume Saplings Grown in Two Soils and Exposed to Elevated CO2 Concentration: an 11-Year Free-Air-CO2 Enrichment (FACE) Experiment in Northern Japan. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
135	Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. Science of the Total Environment, 2021, 767, 144588.	8.0	8
136	Hormesis Shifts the No-Observed-Adverse-Effect Level (NOAEL). Dose-Response, 2021, 19, 155932582110016.	1.6	8
137	Arthropod outbreaks, stressors, and sublethal stress. Current Opinion in Environmental Science and Health, 2022, 28, 100371.	4.1	8
138	Sustained growth suppression in forest-floor seedlings of Sakhalin fir associated with previous-year springtime photoinhibition after a winter cutting of canopy trees. European Journal of Forest Research, 2019, 138, 143-150.	2.5	7
139	On the atmospheric ozone monitoring methodologies. Current Opinion in Environmental Science and Health, 2020, 18, 40-46.	4.1	7
140	Constant ratio of Cc to Ci under various CO2 concentrationsÂand light intensities, and during progressive drought, in seedlings of Japanese white birch. Photosynthesis Research, 2021, 147, 27-37.	2.9	7
141	Enhanced diversity and rock-weathering potential of bacterial communities inhabiting potash trachyte surface beneath mosses and lichens — A case study in Nanjing, China. Science of the Total Environment, 2021, 785, 147357.	8.0	7
142	Plant-insect communication in urban forests: Similarities of plant volatile compositions among tree species (host vs. non-host trees) for alder leaf beetle Agelastica coerulea. Environmental Research, 2022, 204, 111996.	7.5	7
143	Ozone Effects on Vegetation: A Walk from Cells to Ecosystems. Handbook of Environment and Waste Management, 2020, , 357-396.	0.3	7
144	Whole-plant compensatory responses of isoprene emission from hybrid poplar seedlings exposed to elevated ozone. Science of the Total Environment, 2022, 806, 150949.	8.0	7

#	Article	IF	CITATIONS
145	Straw addition decreased the resistance of bacterial community composition to freeze–thaw disturbances in a clay loam soil due to changes in physiological and functional traits. Geoderma, 2022, 424, 116007.	5.1	7
146	Growth and Photosynthetic Responses of Seedlings of Japanese White Birch, a Fast-Growing Pioneer Species, to Free-Air Elevated O3 and CO2. Forests, 2021, 12, 675.	2.1	6
147	High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil. Ecotoxicology and Environmental Safety, 2018, 147, 574-584.	6.0	5
148	Enzyme activity modification in adult beetles (Agelastica coerulea) inhabiting birch trees in an ozone-enriched atmosphere. Environmental Science and Pollution Research, 2018, 25, 32675-32683.	5.3	5
149	An improved method to estimate actual vapor pressure without relative humidity data. Agricultural and Forest Meteorology, 2021, 298-299, 108306.	4.8	5
150	Integration of electron flow partitioning improves estimation of photosynthetic rate under various environmental conditions based on chlorophyll fluorescence. Remote Sensing of Environment, 2021, 254, 112273.	11.0	5
151	Ground-Level Ozone Profile and the Role of Plants as Sources and Sinks. Handbook of Environment and Waste Management, 2020, , 281-324.	0.3	5
152	Effects of biochar on Karst lime soil nutrients, soil microbial communities, and physiology of Sichuan pepper plants. Annals of Applied Biology, 0, , .	2.5	5
153	Safeguarding food security: Hormesis-based plant priming to the rescue. Current Opinion in Environmental Science and Health, 2022, 28, 100374.	4.1	5
154	Editorial: Interactions Between Ozone Pollution and Forest Ecosystems. Frontiers in Forests and Global Change, 2021, 3, .	2.3	4
155	Engaging in scientific peer review: tips for young reviewers. Journal of Forestry Research, 2021, 32, 2249-2254.	3.6	4
156	Editorial Overview: Hormesis and Dose-Response. Current Opinion in Toxicology, 2022, , .	5.0	4
157	Hormesis is an evolutionary expectation: implications for aging. Biogerontology, 2022, 23, 381-384.	3.9	4
158	Dissecting the combined effects of cultivar, fertilization, and irrigation on rhizosphere bacterial communities and nitrogen productivity in rice. Science of the Total Environment, 2022, 835, 155534.	8.0	4
159	Tolerance of Japanese larch to drought is modified by nitrogen and water regimes during cultivation of container seedlings. European Journal of Forest Research, 2022, 141, 699-712.	2.5	4
160	Elevated CO2 offsets the alteration of foliar chemicals (n-icosane, geranyl acetate, and elixene) induced by elevated O3 in three taxa of O3-tolerant eucalypts. Journal of Forestry Research, 2021, 32, 789-803.	3.6	3
161	Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): a comparison between Japanese larch (L. kaempferi) and F1hybrid larch (L. gmelinii var. japonica × L. kaempferi) rootstocks. Silvae Genetica, 2018, 67, 111-116.	0.8	3
162	Environmental hormesis: A tribute to Anthony Stebbing. Science of the Total Environment, 2022, 832, 154996.	8.0	3

#	Article	IF	CITATIONS
163	Stem cells and hormesis. Current Opinion in Toxicology, 2022, 30, 100340.	5.0	3
164	Effects of elevated ozone on bacterial communities inhabiting the phyllo- and endo-spheres of rice plants. Science of the Total Environment, 2022, 830, 154705.	8.0	3
165	Joint impacts of ozone pollution and climate change on yields of Chinese winter wheat. Atmospheric Pollution Research, 2022, 13, 101509.	3.8	3
166	Six statistical issues in scientific writing that might lead to rejection of a manuscript. Journal of Forestry Research, 2022, 33, 731-739.	3.6	2
167	Elevated ozone inhibits isoprene emission of a diploid and a triploid genotype of <i>Populus tomentosa</i> by different mechanisms. Journal of Experimental Botany, 2022, 73, 6449-6462.	4.8	2
168	Natural forest growth and human induced ecosystem disturbance influence water yield in forests. Communications Earth & Environment, 2022, 3, .	6.8	2
169	Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment. Advances in Photosynthesis and Respiration, 2018, , 425-449.	1.0	1
170	China: The New Powerhouse of Hormesis Research?. Dose-Response, 2021, 19, 155932582199565.	1.6	1
171	An Environmental Perspective on Health. Healthy Ageing and Longevity, 2020, , 371-382.	0.2	1
172	Ambient Ozone Alternative Monitoring and Biomonitoring with Higher Plants. Handbook of Environment and Waste Management, 2020, , 325-356.	0.3	1
173	Effects of Ozone on Forests. , 2022, , 1-28.		1
174	Air pollution and climate change threats to plant ecosystems. Environmental Research, 2022, 212, 113420.	7.5	1
175	SI: Air Pollution and Plant Ecosystems. Climate, 2020, 8, 91.	2.8	0
176	The hormetic dose response: implications for risk assessment. , 2021, , 139-146.		0
177	Contaminants of emerging concern and aquatic organisms: the need to consider hormetic responses in effect evaluations. , 0, , .		Ο