Sophie M C Gobeil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2421874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling the SARS-CoV-2 spike glycoprotein conformation. Nature Structural and Molecular Biology, 2020, 27, 925-933.	8.2	376
2	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	12.6	318
3	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
4	D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 2021, 34, 108630.	6.4	263
5	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
6	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
7	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	9.7	125
8	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
9	Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 2019, 10, 4275.	12.8	80
10	Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Reports, 2022, 39, 111009.	6.4	74
11	Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nature Structural and Molecular Biology, 2021, 28, 128-131.	8.2	65
12	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57
13	Maintenance of Native-like Protein Dynamics May Not Be Required for Engineering Functional Proteins. Chemistry and Biology, 2014, 21, 1330-1340.	6.0	29
14	The Structural Dynamics of Engineered β-Lactamases Vary Broadly on Three Timescales yet Sustain Native Function. Scientific Reports, 2019, 9, 6656.	3.3	19
15	Chimeric Î ² -Lactamases: Global Conservation of Parental Function and Fast Time-Scale Dynamics with Increased Slow Motions. PLoS ONE, 2012, 7, e52283.	2.5	16
16	Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs. MBio, 2021, 12, e0300021.	4.1	14
17	Backbone resonance assignments of an artificially engineered TEM-1/PSE-4 Class A β-lactamase chimera. Biomolecular NMR Assignments, 2010, 4, 127-130.	0.8	7
18	15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant. Biomolecular NMR Assignments, 2016, 10, 93-99.	0.8	6

#	Article	IF	CITATIONS
19	15N, 13C and 1H resonance assignments of FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus. Biomolecular NMR Assignments, 2019, 13, 207-212.	0.8	6
20	FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2020, 526, 48-54.	2.1	5
21	Development of sulfahydantoin derivatives as β-lactamase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 35, 127781.	2.2	1