David Amouroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2421701/publications.pdf

Version: 2024-02-01

207 papers

8,607 citations

53 h-index 78 g-index

214 all docs

214 docs citations

times ranked

214

6943 citing authors

#	Article	IF	CITATIONS
1	New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues. Journal of Hazardous Materials, 2022, 425, 127922.	12.4	11
2	Selenium distribution and speciation in waters of pristine alpine lakes from central-western Pyrenees (France–Spain). Environmental Sciences: Processes and Impacts, 2022, 24, 1430-1442.	3.5	1
3	In Situ Photochemical Transformation of Hg Species and Associated Isotopic Fractionation in the Water Column of High-Altitude Lakes from the Bolivian Altiplano. Environmental Science & Description (2008) Technology, 2022, 56, 2258-2268.	10.0	9
4	First Time Identification of Selenoneine in Seabirds and Its Potential Role in Mercury Detoxification. Environmental Science &	10.0	17
5	Dynamics of Dietary Mercury Determined by Mercury Speciation and Isotopic Composition in Dicentrarchus labrax. Frontiers in Environmental Chemistry, 2022, 3, .	1.6	2
6	Reply to the comment on "New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues―by A. Manceau, J. Hazard. Mater. 425 (2021) 127922. doi: 10.1016/j.jhazmat.2021.127922. Journal of Hazardous Materials, 2022, 431, 128582.	12.4	1
7	Recent and historical pollution legacy in high altitude Lake Marbor $ ilde{A}$ © (Central Pyrenees): A record of mining and smelting since pre-Roman times in the Iberian Peninsula. Science of the Total Environment, 2021, 751, 141557.	8.0	14
8	Mercury isotopes of key tissues document mercury metabolic processes in seabirds. Chemosphere, 2021, 263, 127777.	8.2	53
9	Reconstructing two millennia of copper and silver metallurgy in the Lake Titicaca region (Bolivia/Peru) using trace metals and lead isotopic composition. Anthropocene, 2021, 34, 100288.	3.3	11
10	Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax. Environmental Pollution, 2021, 281, 117008.	7.5	16
11	Determination of the Intracellular Complexation of Inorganic and Methylmercury in Cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Environmental Science & Eamp; Technology, 2021, 55, 13971-13979.	10.0	7
12	Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. Environmental Pollution, 2021, 288, 117771.	7.5	11
13	Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides). Environmental Pollution, 2021, 289, 117843.	7.5	10
14	Accurate determination of the total alkalinity and the CO2 system parameters in high-altitude lakes from the Western Pyrenees (France – Spain). Microchemical Journal, 2020, 152, 104345.	4.5	3
15	Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387, 121967.	12.4	38
16	A simple determination of trace mercury concentrations in natural waters using dispersive Micro-Solid phase extraction preconcentration based on functionalized graphene nanosheets. Microchemical Journal, 2020, 154, 104549.	4.5	22
17	Contrasting Spatial and Seasonal Trends of Methylmercury Exposure Pathways of Arctic Seabirds: Combination of Large-Scale Tracking and Stable Isotopic Approaches. Environmental Science & Emp; Technology, 2020, 54, 13619-13629.	10.0	21
18	Multiple regression analysis to assess the contamination with metals and metalloids in surface sediments (Aveiro Lagoon, Portugal). Marine Pollution Bulletin, 2020, 159, 111470.	5.0	13

#	Article	IF	CITATIONS
19	Comparison of the Isotopic Composition of Hg and Pb in Two Atmospheric Bioaccumulators in a Pyrenean Beech Forest (Iraty Forest, Western Pyrenees, France/Spain). Frontiers in Environmental Chemistry, 2020, 1 , .	1.6	3
20	Accumulation of Methylmercury in the High-Altitude Lake Uru Uru (3686 m a.s.l, Bolivia) Controlled by Sediment Efflux and Photodegradation. Applied Sciences (Switzerland), 2020, 10, 7936.	2.5	6
21	Hg isotopic composition and total Hg mass fraction in NIES Certified Reference Material No. 28 Urban Aerosols. Analytical and Bioanalytical Chemistry, 2020, 412, 4483-4493.	3.7	5
22	A "seabird-eye―on mercury stable isotopes and cycling in the Southern Ocean. Science of the Total Environment, 2020, 742, 140499.	8.0	24
23	Mercury loads and fluxes from wastewater: A nationwide survey in Switzerland. Water Research, 2020, 175, 115708.	11.3	20
24	Diagenetic production, accumulation and sediment-water exchanges of methylmercury in contrasted sediment facies of Lake Titicaca (Bolivia). Science of the Total Environment, 2020, 723, 138088.	8.0	18
25	Cycling and atmospheric exchanges of selenium in Canadian subarctic thermokarst ponds. Biogeochemistry, 2019, 145, 193-211.	3.5	7
26	Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Science of the Total Environment, 2019, 667, 622-637.	8.0	37
27	In vitro simulation of oscillatory redox conditions in intertidal sediments: N, Mn, Fe, and P coupling. Continental Shelf Research, 2019, 177, 33-41.	1.8	11
28	Lake sediment mercury biogeochemistry controlled by sulphate input from drainage basin. Applied Geochemistry, 2019, 104, 135-145.	3.0	7
29	Assessment of Hg contamination by a Chlor-Alkali Plant in riverine and coastal sites combining Hg speciation and isotopic signature (Sagua la Grande River, Cuba). Journal of Hazardous Materials, 2019, 371, 558-565.	12.4	20
30	The Bay of Biscay. , 2019, , 113-152.		9
31	Multiple regression analysis to assess the spatial distribution and speciation of mercury in surface sediments of a contaminated lagoon. Journal of Hazardous Materials, 2019, 367, 715-724.	12.4	16
32	Seabird Tissues As Efficient Biomonitoring Tools for Hg Isotopic Investigations: Implications of Using Blood and Feathers from Chicks and Adults. Environmental Science & Environmental Science & 227-4234.	10.0	42
33	Development of a large volume injection method using a programmed temperature vaporization injector – gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters. Journal of Chromatography A, 2018, 1547, 77-85.	3.7	36
34	Role of the floodplain lakes in the methylmercury distribution and exchanges with the Amazon River, Brazil. Journal of Environmental Sciences, 2018, 68, 24-40.	6.1	14
35	Hg-Stable Isotope Variations in Marine Top Predators of the Western Arctic Ocean. ACS Earth and Space Chemistry, 2018, 2, 479-490.	2.7	38
31 32 33 34	Multiple regression analysis to assess the spatial distribution and speciation of mercury in surface sediments of a contaminated lagoon. Journal of Hazardous Materials, 2019, 367, 715-724. Seabird Tissues As Efficient Biomonitoring Tools for Hg Isotopic Investigations: Implications of Using Blood and Feathers from Chicks and Adults. Environmental Science & Environmental & Envir	10.0 3.7 6.1	16 42 36

Flux model to estimate the transport of mercury species in a contaminated lagoon (Ria de Aveiro,) Tj ETQq $0\ 0\ 0\ rgBT_{6}$ Overlock 10 Tf 50

#	Article	IF	CITATIONS
37	Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences (Switzerland), 2018, 8, 438.	2.2	27
38	Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea. Global Biogeochemical Cycles, 2018, 32, 1498-1513.	4.9	36
39	Multi-element isotopic signature (C, N, Pb, Hg) in epiphytic lichens to discriminate atmospheric contamination as a function of land-use characteristics (Pyrénées-Atlantiques, SW France). Environmental Pollution, 2018, 243, 961-971.	7. 5	13
40	Mercury Isotopic Fractionation during Pedogenesis in a Tropical Forest Soil Catena (French Guiana): Deciphering the Impact of Historical Gold Mining. Environmental Science & Environmental Science & 2018, 52, 11573-11582.	10.0	18
41	Cleaning and sampling protocol for analysis of mercury and dissolved organic matter in freshwater systems. MethodsX, 2018, 5, 1017-1026.	1.6	11
42	Dissolved Organic Matter Controls Seasonal and Spatial Selenium Concentration Variability in Thaw Lakes across a Permafrost Gradient. Environmental Science & Environmental Science & 2018, 52, 10254-10262.	10.0	20
43	The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe. Water Research, 2018, 144, 172-182.	11.3	53
44	Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms and Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. Environmental Science & Emp; Technology, 2018, 52, 9758-9767.	10.0	70
45	Origins and discrimination between local and regional atmospheric pollution in Haiphong (Vietnam), based on metal(loid) concentrations and lead isotopic ratios in PM10. Environmental Science and Pollution Research, 2018, 25, 26653-26668.	5.3	28
46	Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria. Chemosphere, 2018, 208, 871-879.	8.2	16
47	Hg Compound-Specific Isotope Analysis at Ultratrace Levels Using an on Line Gas Chromatographic Preconcentration and Separation Strategy Coupled to Multicollector-Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2018, 90, 7809-7816.	6.5	22
48	Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation. Scientific Reports, 2018, 8, 8865.	3.3	34
49	Determination of total Hg isotopic composition at ultra-trace levels by on line cold vapor generation and dual gold-amalgamation coupled to MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2017, 32, 373-384.	3.0	14
50	Occurrence and Fate of Organic and Organometallic Pollutants in Municipal Wastewater Treatment Plants and Their Impact on Receiving Waters (Adour Estuary, France). Archives of Environmental Contamination and Toxicology, 2017, 73, 619-630.	4.1	18
51	Assessment of mercury speciation in feathers using species-specific isotope dilution analysis. Talanta, 2017, 174, 100-110.	5 . 5	53
52	Mercury Stable Isotopes Discriminate Different Populations of European Seabass and Trace Potential Hg Sources around Europe. Environmental Science & E	10.0	27
53	Mercury contamination level and speciation inventory in Lakes Titicaca & Dru-Uru (Bolivia): Current status and future trends. Environmental Pollution, 2017, 231, 262-270.	7. 5	41
54	Association of a Specific Algal Group with Methylmercury Accumulation in Periphyton of a Tropical High-Altitude Andean Lake. Archives of Environmental Contamination and Toxicology, 2017, 72, 1-10.	4.1	19

#	Article	IF	CITATIONS
55	Role of Settling Particles on Mercury Methylation in the Oxic Water Column of Freshwater Systems. Environmental Science & Envi	10.0	99
56	Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon. Journal of Hazardous Materials, 2016, 318, 711-722.	12.4	12
57	Synergistic effects of mining and urban effluents on the level and distribution of methylmercury in a shallow aquatic ecosystem of the Bolivian Altiplano. Environmental Sciences: Processes and Impacts, 2016, 18, 1550-1560.	3.5	12
58	Sources and fate of mercury pollution in Almad $\tilde{\mathbb{A}}$ mining district (Spain): Evidences from mercury isotopic compositions in sediments and lichens. Chemosphere, 2016, 147, 430-438.	8.2	36
59	Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano. Environmental Science and Pollution Research, 2016, 23, 6919-6933.	5.3	17
60	Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives. Analytical and Bioanalytical Chemistry, 2016, 408, 2641-2648.	3.7	8
61	A hundred year record of industrial and urban development in French Alps combining Hg accumulation rates and isotope composition in sediment archives from Lake Luitel. Chemical Geology, 2016, 431, 10-19.	3.3	30
62	Assessment of background concentrations of organometallic compounds (methylmercury, ethyllead) Tj ETQq0 0	0 fgBT /C	verlock 10 Tf
63	Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa. Environmental Monitoring and Assessment, 2016, 188, 47.	2.7	12
64	Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury. Metallomics, 2016, 8, 170-178.	2.4	50
65	Investigation of Hg uptake and transport between paddy soil and rice seeds combining Hg isotopic composition and speciation. Elementa, 2016, 4, .	3.2	11
66	Evaluation of preconcentration methods in the analysis of synthetic musks in wholeâ€water samples. Journal of Separation Science, 2015, 38, 2298-2304.	2.5	8
67	Approach to spatialize local to long-range atmospheric metal input (Cd, Cu, Hg, Pb) in epiphytic lichens over a meso-scale area (Pyrénées-Atlantiques, southwestern France). Environmental Science and Pollution Research, 2015, 22, 8536-8548.	5.3	10
68	Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & E	10.0	60
69	High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Research, 2015, 80, 245-255.	11.3	57
70	Spatial and seasonal variations of methylmercury in European glass eels (Anguilla anguilla) in the Adour estuary (France) and relation to their migratory behaviour. Environmental Science and Pollution Research, 2015, 22, 10721-10732.	5.3	11
71	Specific Effects of Dietary Methylmercury and Inorganic Mercury in Zebrafish (<i>Danio rerio</i>) Determined by Genetic, Histological, and Metallothionein Responses. Environmental Science & Environm	10.0	47
72	Specific Pathways of Dietary Methylmercury and Inorganic Mercury Determined by Mercury Speciation and Isotopic Composition in Zebrafish (<i>Danio rerio</i>). Environmental Science & Environmental Sc	10.0	60

#	Article	IF	CITATIONS
73	Hg Stable Isotope Time Trend in Ringed Seals Registers Decreasing Sea Ice Cover in the Alaskan Arctic. Environmental Science &	10.0	26
74	Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes. Environmental Sciences: Processes and Impacts, 2015, 17, 145-155.	3.5	1
75	Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland). Aquatic Sciences, 2014, 76, 21.	1.5	7
76	Analytical Performances of Nanostructured Gold Supported on Metal Oxide Sorbents for the Determination of Gaseous Mercury. International Journal of Analytical Chemistry, 2014, 2014, 1-8.	1.0	5
77	In-port derivatization coupled to different extraction techniques for the determination of alkylphenols in environmental water samples. Journal of Chromatography A, 2014, 1340, 1-7.	3.7	13
78	Comparison between GC–MS and GC–ICPMS using isotope dilution for the simultaneous monitoring of inorganic and methyl mercury, butyl and phenyl tin compounds in biological tissues. Analytical and Bioanalytical Chemistry, 2014, 406, 1253-1258.	3.7	24
79	Hemoglobin as a major binding protein for methylmercury in white-sided dolphin liver. Analytical and Bioanalytical Chemistry, 2014, 406, 1121-1129.	3.7	43
80	Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 2014, 49, 391-405.	11.3	93
81	Mercury in the food chain of the Lagoon of Venice, Italy. Marine Pollution Bulletin, 2014, 88, 194-206.	5.0	28
82	Seasonal distribution and speciation of mercury in a gold mining area, north-west province, South Africa. Toxicological and Environmental Chemistry, 2014, 96, 387-402.	1.2	10
83	Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Science of the Total Environment, 2014, 496, 701-713.	8.0	35
84	Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environmental Pollution, 2014, 192, 212-215.	7.5	25
85	Mercury speciation analysis in human hair by species-specific isotope-dilution using GC–ICP–MS. Analytical and Bioanalytical Chemistry, 2013, 405, 3001-3010.	3.7	31
86	MMHg production and export from intertidal sediments to the water column of a tidal lagoon (Arcachon Bay, France). Biogeochemistry, 2013, 114, 341-358.	3 . 5	29
87	Comparison of Different Air–Water Gas Exchange Models to Determine Gaseous Mercury Evasion from Different European Coastal Lagoons and Estuaries. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	14
88	In situ experiments for element species-specific environmental reactivity of tin and mercury compounds using isotopic tracers and multiple linear regression. Environmental Science and Pollution Research, 2013, 20, 1269-1280.	5.3	40
89	Investigations into the differential reactivity of endogenous and exogenous mercury species in coastal sediments. Environmental Science and Pollution Research, 2013, 20, 1292-1301.	5. 3	5
90	Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media. Chemical Geology, 2013, 336, 26-36.	3.3	51

#	Article	IF	CITATIONS
91	Simultaneous determination of mercury and butyltin species using a multiple species-specific isotope dilution methodology on the European, <i>Anguilla anguilla</i> International Journal of Environmental Analytical Chemistry, 2013, 93, 166-182.	3.3	10
92	Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: Accumulation in shoots from the water might involve copper transporters. Chemosphere, 2013, 90, 595-602.	8.2	59
93	Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chemical Geology, 2013, 336, 103-111.	3.3	91
94	The impact of post gold mining on mercury pollution in the West Rand region, Gauteng, South Africa. Journal of Geochemical Exploration, 2013, 134, 111-119.	3.2	36
95	Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes. Chemical Geology, 2013, 355, 153-162.	3.3	29
96	Investigating the isotopic composition of mercury and lead in epiphytic lichens from South-western France (PyrA@nA@es-Atlantiques) to better constrain the spatial variability of their atmospheric transport and deposition. E3S Web of Conferences, 2013, 1, 29002.	0.5	2
97	Determination of methyl mercury and inorganic mercury in natural waters at the pgL ^{â^{^1}1} level: Intercomparison between PT-GC-Pyr-AFS and GC-ICP-MS using Ethylation or Propylation derivatization. E3S Web of Conferences, 2013, 1, 09001.	0.5	4
98	Impact of Oil on Bacterial Community Structure in Bioturbated Sediments. PLoS ONE, 2013, 8, e65347.	2.5	61
99	Speciation of mercury in South African coals. Toxicological and Environmental Chemistry, 2012, 94, 1688-1706.	1.2	19
100	Identification of mercury and other metals complexes with metallothioneins in dolphin liver by hydrophilic interaction liquid chromatography with the parallel detection by ICP MS and electrospray hybrid linear/orbital trap MS/MS. Metallomics, 2012, 4, 473.	2.4	31
101	Volatile Dimethyl Polonium Produced by Aerobic Marine Microorganisms. Environmental Science & Environmental Science	10.0	11
102	Mercury speciation in seafood using isotope dilution analysis: A review. Talanta, 2012, 89, 12-20.	5.5	51
103	Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach Dang Estuary (Haiphong, Vietnam). Marine Pollution Bulletin, 2012, 64, 1789-1798.	5.0	19
104	Transformation, Localization, and Biomolecular Binding of Hg Species at Subcellular Level in Methylating and Nonmethylating Sulfate-Reducing Bacteria. Environmental Science &	10.0	33
105	Higher Mass-Independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environmental Science & Eamp; Technology, 2012, 46, 5902-5911.	10.0	87
106	Speciesâ€specific stable isotope analysis by the hyphenation of chromatographic techniques with MCâ€lCPMS. Mass Spectrometry Reviews, 2012, 31, 504-521.	5.4	33
107	Specific pathways for the incorporation of dissolved barium and molybdenum into the bivalve shell: An isotopic tracer approach in the juvenile Great Scallop (Pecten maximus). Marine Environmental Research, 2012, 78, 15-25.	2.5	21
108	Measurements of gaseous mercury exchanges at the sediment–water, water–atmosphere and sediment–atmosphere interfaces of a tidal environment (Arcachon Bay, France). Journal of Environmental Monitoring, 2011, 13, 1351.	2.1	28

#	Article	IF	Citations
109	Hg Speciation and Stable Isotope Signatures in Human Hair As a Tracer for Dietary and Occupational Exposure to Mercury. Environmental Science & Exposure to Mercury. Environmental Science & Exposure to Mercury.	10.0	101
110	Distribution of mercury and organic matter in particle-size classes in sediments contaminated by a waste water treatment plant: Vidy Bay, Lake Geneva, Switzerland. Journal of Environmental Monitoring, 2011, 13, 974.	2.1	46
111	Investigation of Hg species binding biomolecules in dolphin liver combining GC and LC-ICP-MS with isotopic tracers. Journal of Analytical Atomic Spectrometry, 2011, 26, 187-194.	3.0	24
112	An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments. Marine Environmental Research, $2011, 71, 1-9$.	2.5	24
113	Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang) Tj ${\sf ETQq1~1~0}$.	784314 rş	gBT/Overloc
114	Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data. Analytical and Bioanalytical Chemistry, 2011, 401, 2699-2711.	3.7	50
115	Simultaneous determination of mercury methylation and demethylation capacities of various sulfateâ€reducing bacteria using speciesâ€specific isotopic tracers. Environmental Toxicology and Chemistry, 2011, 30, 337-344.	4.3	104
116	Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). Environmental Science and Pollution Research, 2010, 17, 1422-1432.	5. 3	61
117	Spring molybdenum enrichment in scallop shells: a potential tracer of diatom productivity in temperate coastal environments (Brittany, NW France). Biogeosciences, 2010, 7, 233-245.	3.3	15
118	Approach to Measure Isotopic Ratios in Species Using Multicollector-ICPMS Coupled with Chromatography. Analytical Chemistry, 2010, 82, 5652-5662.	6.5	76
119	Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikalâ° Angara River Using Hg Isotopic Composition. Environmental Science & Echnology, 2010, 44, 8030-8037.	10.0	113
120	High frequency Barium profiles in shells of the Great Scallop & Damp; lt; i& Damp; gt; Pecten maximus & Damp; gt; ia methodical long-term and multi-site survey in Western Europe. Biogeosciences, 2009, 6, 157-170.	3.3	33
121	Mercury distribution and exchanges between the Amazon River and connected floodplain lakes. Science of the Total Environment, 2009, 407, 6073-6084.	8.0	26
122	<i>In situ </i> ethylation of organolead, organotin and organomercury species by bromomagnesium tetraethylborate prior to GCâ€ICPâ€MS analysis. Journal of Separation Science, 2009, 32, 2426-2433.	2.5	18
123	Species-Specific Stable Isotope Fractionation of Mercury during Hg(II) Methylation by an Anaerobic Bacteria (<i>Desulfobulbus propionicus</i>) under Dark Conditions. Environmental Science & Emp; Technology, 2009, 43, 9183-9188.	10.0	164
124	Overview of Mercury Methylation Capacities among Anaerobic Bacteria Including Representatives of the Sulphate-Reducers: Implications for Environmental Studies. Geomicrobiology Journal, 2009, 26, 1-8.	2.0	110
125	Barium and molybdenum records in bivalve shells: Geochemical proxies for phytoplankton dynamics in coastal environments?. Limnology and Oceanography, 2009, 54, 1002-1014.	3.1	97
126	Water to atmosphere fluxes of 131I in relation with alkyl-iodide compounds from the Seine Estuary (France). Journal of Environmental Radioactivity, 2008, 99, 1102-1110.	1.7	5

#	Article	IF	CITATIONS
127	Atmospheric mercury at mediterranean coastal stations. Environmental Fluid Mechanics, 2008, 8, 101-116.	1.6	40
128	Evaluating the potential and limitations of double-spiking species-specific isotope dilution analysis for the accurate quantification of mercury species in different environmental matrices. Analytical and Bioanalytical Chemistry, 2008, 390, 655-666.	3.7	81
129	New volatile selenium and tellurium species in fermentation gases produced by composting duck manure. Atmospheric Environment, 2008, 42, 7786-7794.	4.1	26
130	Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Systematic and Applied Microbiology, 2008, 31, 30-37.	2.8	64
131	Occurrence and distribution of organotin compounds in leachates and biogases from municipal landfills. Water Research, 2008, 42, 987-996.	11.3	32
132	Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
133	Simultaneous Determination of Species-Specific Isotopic Composition of Hg by Gas Chromatography Coupled to Multicollector ICPMS. Analytical Chemistry, 2008, 80, 3530-3538.	6.5	99
134	High-Frequency Archives of Manganese Inputs To Coastal Waters (Bay of Seine, France) Resolved by the LAâ^ICPâ^MS Analysis of Calcitic Growth Layers along Scallop Shells (<i>Pecten maximus</i>). Environmental Science & Damp; Technology, 2008, 42, 86-92.	10.0	33
135	Bacterial community structure along the Adour estuary (French Atlantic coast): influence of salinity gradient versus metal contamination. Aquatic Microbial Ecology, 2007, 49, 47-56.	1.8	18
136	Speciation analysis of arsenic in landfill leachate. Water Research, 2007, 41, 3177-3185.	11.3	55
137	Comparison of different numerical approaches for multiple spiking species-specific isotope dilution analysis exemplified by the determination of butyltin species in sediments. Journal of Analytical Atomic Spectrometry, 2007, 22, 1373.	3.0	44
138	Reactivity, interactions and transport of trace elements, organic carbon and particulate material in a mountain range river system (Adour River, France). Journal of Environmental Monitoring, 2007, 9, 157.	2.1	23
139	Determination of alkylated tin compounds in landfill leachates using isotopically enriched tin species with GC-ICP-MS detection. Journal of Analytical Atomic Spectrometry, 2007, 22, 258-266.	3.0	34
140	Platinum, Palladium, and Rhodium in Fresh Snow from the Aspe Valley (Pyrenees Mountains, France). Environmental Science & Envi	10.0	42
141	Distribution and Fate of Inorganic and Organic Arsenic Species in Landfill Leachates and Biogases. Environmental Science & Env	10.0	56
142	Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry, 2007, 107, 49-63.	2.3	245
143	Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Marine Chemistry, 2007, 107, 31-48.	2.3	72
144	Mercury speciation in surface and deep waters of the Mediterranean Sea. Marine Chemistry, 2007, 107, 13-30.	2.3	109

#	Article	IF	Citations
145	Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau) Tj ETQq1 1 0.784	314 rgBT 2. p BT	/Overlock 10 1
146	The biogeochemistry of mercury at the sediment–water interface in the Thau Lagoon. 2. Evaluation of mercury methylation potential in both surface sediment and the water column. Estuarine, Coastal and Shelf Science, 2007, 72, 485-496.	2.1	61
147	Biogeochemical and contaminant cycling in sediments from a human-impacted coastal lagoon – Introduction and summary. Estuarine, Coastal and Shelf Science, 2007, 72, 387-392.	2.1	8
148	Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science, 2007, 72, 432-446.	2.1	49
149	Methylmercury bioconcentration in muscle tissue of the European eel (Anguilla anguilla) from the Adour estuary (Bay of Biscay, France). Marine Pollution Bulletin, 2007, 54, 1031-1036.	5.0	53
150	(Tri)Butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem. Science of the Total Environment, 2007, 388, 214-233.	8.0	43
151	Matrix-matched quantitative analysis of trace-elements in calcium carbonate shells by laser-ablation ICP–MS: application to the determination of daily scale profiles in scallop shell (Pecten maximus). Analytical and Bioanalytical Chemistry, 2007, 387, 1131-1140.	3.7	67
152	Time Course Transformations and Fate of Mercury in Aquatic Model Ecosystems. Water, Air, and Soil Pollution, 2007, 183, 265-281.	2.4	10
153	Evaluation of analytical strategies for the determination of metal concentrations to assess landfill leachate contamination. Journal of Environmental Monitoring, 2006, 8, 1069.	2.1	16
154	Mercury in surface waters of a macrotidal urban estuary (River Adour, south-west France). Chemistry and Ecology, 2006, 22, 137-148.	1.6	15
155	lodine transfers inÂtheÂcoastal marine environment: theÂkey role ofÂbrown algae andÂofÂtheirÂvanadium-dependent haloperoxidases. Biochimie, 2006, 88, 1773-1785.	2.6	155
156	Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. Marine Chemistry, 2006, 102 , $72-95$.	2.3	66
157	Speciation Analysis of Mercury in Aquatic Environment. Applied Spectroscopy Reviews, 2006, 41, 591-619.	6.7	61
158	Simultaneous determination of monomethylmercury, monobutyltin, dibutyltin and tributyltin in environmental samples by multi-elemental-species-specific isotope dilution analysis using electron ionisation GC-MS. Journal of Mass Spectrometry, 2006, 41, 1491-1497.	1.6	25
159	Palladium in a Mountain Ecosystem (Aspe Valley, Pyrenees, France)., 2006,, 369-380.		O
160	METHYLMERCURY IN SURFACE SEDIMENTS IN COASTAL ENVIRONMENTS. COMPARISON BETWEEN A DYNAMIO MACROTIDAL ESTUARY AND A MICROTIDAL LAGOON. , 2006, , 455-458.		0
161	Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Analytical and Bioanalytical Chemistry, 2005, 381, 854-862.	3.7	106
162	Determination of metal and organometal trophic bioaccumulation in the benthic macrofauna of the Adour estuary coastal zone (SW France, Bay of Biscay). Journal of Environmental Monitoring, 2005, 7, 693.	2.1	26

#	Article	IF	CITATIONS
163	Nickel and vanadium contamination of benthic invertebrates following the "Erika―wreck. Aquatic Living Resources, 2004, 17, 273-280.	1.2	38
164	Dynamics of mercury species in surface sediments of a macrotidal estuarine–coastal system (Adour) Tj ETQq0 C	0 ggBT /0	Overlock 10
165	Potential and limits of speciated isotope-dilution analysis for metrology and assessing environmental reactivity. TrAC - Trends in Analytical Chemistry, 2004, 23, 261-272.	11.4	63
166	Potential and Limits of Speciated Isotope-Dilution Analysis for Metrology and Assessing Environmental Reactivity. ChemInform, 2004, 35, no.	0.0	0
167	Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Marine Chemistry, 2004, 90, 107-123.	2.3	117
168	Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque) Tj ETQq0 0 0 rgE	3T Overlo	ock 10 Tf 50
169	Improvement of analytical performances for mercury speciation by on-line derivatization, cryofocussing and atomic fluorescence spectrometry. Talanta, 2004, 62, 433-438.	5.5	59
170	Determination of tributyltin in marine sediment: Comit $\ddot{\imath}_2$ Consultatif pour la Quantit $\ddot{\imath}_2$ de Mat $\ddot{\imath}_2$ 2re (CCQM) pilot study P-18 international intercomparison. Analytical and Bioanalytical Chemistry, 2003, 376, 780-787.	3.7	28
171	Simultaneous Sample Preparation and Species-Specific Isotope Dilution Mass Spectrometry Analysis of Monomethylmercury and Tributyltin in a Certified Oyster Tissue. Analytical Chemistry, 2003, 75, 4095-4102.	6.5	77
172	Using Speciated Isotope Dilution with GCâ^Inductively Coupled Plasma MS To Determine and Unravel the Artificial Formation of Monomethylmercury in Certified Reference Sediments. Analytical Chemistry, 2003, 75, 3202-3211.	6.5	94
173	Rapid, accurate and precise determination of tributyltin in sediments and biological samples by species specific isotope dilution-microwave extraction-gas chromatography-ICP mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 247-253.	3.0	42
174	Transfer of metallic contaminants at the sediment-water interface in a costal lagon: Role of the biological and microbial activity. European Physical Journal Special Topics, 2003, 107, 41-44.	0.2	2
175	Monitoring bacterial communities adaptation to mercury contamination in estuarine sediments maintained in slurries. European Physical Journal Special Topics, 2003, 107, 393-396.	0.2	4
176	Inorganic mercury and methylmercury in surface sediments and mussel tissues from a microtidal lagoon (Bizerte, Tunisia). Journal of Coastal Conservation, 2002, 8, 141.	1.6	24
177	Application of cryofocusing hydride generation and atomic fluorescence detection for dissolved mercury species determination in natural water samples. Journal of Environmental Monitoring, 2002, 4, 517-521.	2.1	23
178	Biogenic Volatilization of Trace Elements from European Estuaries. ACS Symposium Series, 2002, , 151-165.	0.5	6
179	Working methods paper: Micro-scale preparation and characterization of isotopically enriched monomethylmercury. Applied Organometallic Chemistry, 2002, 16, 610-615.	3.5	42
180	Biogenic Gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-shore and Shelf Waters of the North-western Black Sea. Estuarine, Coastal and Shelf Science, 2002, 54, 575-587.	2.1	97

#	Article	IF	CITATIONS
181	Mercury Speciation in Sediments of a Tropical Coastal Environment. Environmental Technology (United Kingdom), 2002, 23, 899-910.	2.2	18
182	Application of Isotopically Labeled Methylmercury for Isotope Dilution Analysis of Biological Samples Using Gas Chromatography/ICPMS. Analytical Chemistry, 2002, 74, 2505-2512.	6.5	109
183	Volatile organotin compounds (butylmethyltin) in three European estuaries (Gironde, Rhine, Scheldt). Biogeochemistry, 2002, 59, 161-181.	3.5	22
184	Formation and volatilisation of alkyl-iodidesand -selenides in macrotidal estuaries. Biogeochemistry, 2002, 59, 183-206.	3.5	33
185	Inorganic mercury and methylmercury in surface sediments and mussel tissues from a microtidal lagoon (Bizerte, Tunisia). Journal of Coastal Conservation, 2002, 8, 141-145.	1.6	0
186	Speciation of Mercury in a Fluid Mud Profile of a Highly Turbid Macrotidal Estuary (Gironde, France). Environmental Science &	10.0	60
187	Role of oceans as biogenic sources of selenium. Earth and Planetary Science Letters, 2001, 189, 277-283.	4.4	97
188	Adsorption of aqueous inorganic mercury and methylmercury on suspended kaolin: influence of sodium chloride, fulvic acid and particle content. Applied Organometallic Chemistry, 2001, 15, 490-498.	3.5	26
189	Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Applied Organometallic Chemistry, 2000, 14, 236-244.	3.5	33
190	Chapter 13 Trends in speciation analysis for routine and new environmental issues. Comprehensive Analytical Chemistry, 2000, , 451-500.	1.3	1
191	Mercury Concentrations in Sediment Profiles of a Degraded Tropical Coastal Environment. Environmental Technology (United Kingdom), 2000, 21, 297-305.	2.2	44
192	Chemical availability of mercury in stream sediments from the Almad $\tilde{\mathbb{A}}$ \mathbb{Q} n area, Spain. Journal of Environmental Monitoring, 2000, 2, 360-366.	2.1	36
193	Field cryofocussing hydride generation applied to the simultaneous multi-elemental determination of alkyl-metal(loid) species in natural waters using ICP-MS detection. Journal of Environmental Monitoring, 2000, 2, 603-612.	2.1	45
194	Volatilization of Organotin Compounds from Estuarine and Coastal Environments. Environmental Science &	10.0	102
195	Potential interferences generated during mercury species determination using acid leaching, aqueous ethylation, cryogenic gas chromatography and atomic spectrometry detection techniques. Chemosphere, 1999, 39, 1119-1136.	8.2	44
196	A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochemical Cycles, 1999, 13, 399-444.	4.9	552
197	Elemental Mercury in the Atmosphere of a Tropical Amazonian Forest (French Guiana). Environmental Science & Environmental Scie	10.0	37
198	Sampling and probing volatile metal(loid) species in natural waters by in-situ purge and cryogenic trapping followed by gas chromatography and inductively coupled plasma mass spectrometry (P-CT–GC–ICP/MS). Analytica Chimica Acta, 1998, 377, 241-254.	5.4	93

#	Article	IF	CITATIONS
199	Interferences during mercury speciation determination by volatilization, cryofocusing, gas chromatography and atomic absorption spectroscopy: comparative study between hydride generation and ethylation techniques. Journal of Analytical Atomic Spectrometry, 1998, 13, 623-629.	3.0	43
200	Field determination of volatile selenium species at ultra trace levels in environmental waters by on-line purging, cryofocusing and detection by atomic fluorescence spectroscopy. Journal of Analytical Atomic Spectrometry, 1998, 13, 615-621.	3.0	37
201	Cryofocusing coupled to atomic absorption spectrometry for rapid and simple mercury speciation in environmental matrices. Journal of Analytical Atomic Spectrometry, 1998, 13, 755-764.	3.0	81
202	Open focused microwave-assisted sample preparation for rapid total and mercury species determination in environmental solid samples. Journal of Automated Methods and Management in Chemistry, 1998, 20, 99-108.	0.3	10
203	Rapid Determination of Inorganic Mercury and Methylmercury in Biological Reference Materials by Hydride Generation, Cryofocusing, Atomic Absorption Spectrometry After Open Focused Microwave-assisted Alkaline Digestion. Journal of Analytical Atomic Spectrometry, 1997, 12, 743-750.	3.0	170
204	Fe and H2O2 distributions in the upper water column in the Indian sector of the Southern Ocean. Earth and Planetary Science Letters, 1997, 147, 83-92.	4.4	45
205	Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France. Marine Chemistry, 1997, 58, 173-188.	2.3	58
206	Maritime emission of selenium to the atmosphere in Eastern Mediterranean seas. Geophysical Research Letters, 1996, 23, 1777-1780.	4.0	64
207	Biogeochemistry of selenium compounds in the water column of warm monomictic Lake Kinneret. Biogeochemistry, 0 , 1 .	3.5	1