John Challiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242094/publications.pdf

Version: 2024-02-01

57719 79644 6,654 162 44 73 citations h-index g-index papers 162 162 162 5355 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends in Pharmacological Sciences, 1991, 12, 19-27.	4.0	440
2	Neuronal Ca2+ stores: activation and function. Trends in Neurosciences, 1995, 18, 299-306.	4.2	283
3	Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends in Pharmacological Sciences, 1994, 15, 114-119.	4.0	232
4	Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: Effects of neurotransmitters and depolarization. Biochemical and Biophysical Research Communications, 1988, 157, 684-691.	1.0	223
5	Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends in Pharmacological Sciences, 1991, 12, 297-303.	4.0	214
6	Differential Regulation of Muscarinic Acetylcholine Receptor-sensitive Polyphosphoinositide Pools and Consequences for Signaling in Human Neuroblastoma Cells. Journal of Biological Chemistry, 1998, 273, 5037-5046.	1.6	157
7	Nitric Oxide Is a Volume Transmitter Regulating Postsynaptic Excitability at a Glutamatergic Synapse. Neuron, 2008, 60, 642-656.	3.8	154
8	Receptor-specific messenger oscillations. Nature, 2001, 413, 381-382.	13.7	128
9	Determinants of Metabotropic Glutamate Receptor-5-mediated Ca2+ and Inositol 1,4,5-Trisphosphate Oscillation Frequency. Journal of Biological Chemistry, 2002, 277, 35947-35960.	1.6	101
10	Non-visual GRKs: are we seeing the whole picture?. Trends in Pharmacological Sciences, 2003, 24, 626-633.	4.0	100
11	New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends in Pharmacological Sciences, 1998, 19, 467-475.	4.0	98
12	Increased Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 Expression Mediates Intrinsic Airway Smooth Muscle Hypercontractility in Asthma. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 267-274.	2.5	95
13	An investigation of the \hat{l}^2 -adrenoceptor that mediates metabolic responses to the novel agonist BRL28410 in rat soleus muscle. Biochemical Pharmacology, 1988, 37, 947-950.	2.0	94
14	Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. British Journal of Pharmacology, 1997, 122, 935-941.	2.7	89
15	The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats. European Journal of Clinical Investigation, 1997, 27, 475-483.	1.7	85
16	Mechanisms Underlying the Neuronal Calcium Sensor-1-evoked Enhancement of Exocytosis in PC12 Cells. Journal of Biological Chemistry, 2002, 277, 30315-30324.	1.6	83
17	Group-I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. Journal of Neurochemistry, 2002, 83, 1139-1153.	2.1	83
18	Substrate cycles: their role in improving sensitivity in metabolic control. Trends in Biochemical Sciences, 1984, 9, 277-280.	3.7	82

#	Article	IF	CITATIONS
19	Lithium Reduqes the Accumulation or Inositol Polyphosphate Second Messengers Following Cholinergic Stimulation of Cerebral Cortex Slices. Journal of Neurochemistry, 1989, 53, 1652-1655.	2.1	78
20	Gq/11 and Gi/o activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. British Journal of Pharmacology, 2001, 132, 950-958.	2.7	76
21	Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Letters, 1983, 158, 103-106.	1.3	71
22	Involvement of Intracellular Stores in the Ca ²⁺ Responses to <i>N</i> à€Methylâ€Dâ€Aspartate and Depolarization in Cerebellar Granule Cells. Journal of Neurochemistry, 1993, 61, 760-763.	2.1	70
23	Insulin sensitivity of rates of glycolysis and glycogen synthesis in soleus, stripped soleus, epitrochlearis, and hemi-diaphragm muscles isolated from sedentary rats. Bioscience Reports, 1983, 3, 675-679.	1.1	68
24	"Phenotypic―pharmacology: The influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochemical Pharmacology, 2007, 73, 737-751.	2.0	64
25	Lysophosphatidic Acid-induced Ca2+ Mobilization Requires Intracellular Sphingosine 1-Phosphate Production. Journal of Biological Chemistry, 2000, 275, 38532-38539.	1.6	61
26	Functional Selectivity of Muscarinic Receptor Antagonists for Inhibition of M3-Mediated Phosphoinositide Responses in Guinea Pig Urinary Bladder and Submandibular Salivary Gland. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 1255-1265.	1.3	58
27	Modulation of Gq-Protein-Coupled Inositol Trisphosphate and Ca2+ Signaling by the Membrane Potential. Journal of Neuroscience, 2006, 26, 9983-9995.	1.7	58
28	Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovascular Research, 2010, 85, 424-433.	1.8	58
29	Ca2+/calmodulin-dependent translocation of sphingosine kinase: role in plasma membrane relocation but not activation. Cell Calcium, 2003, 33, 119-128.	1.1	57
30	Single Cell Analysis and Temporal Profiling of Agonist-mediated Inositol 1,4,5-Trisphosphate, Ca2+, Diacylglycerol, and Protein Kinase C Signaling using Fluorescent Biosensors. Journal of Biological Chemistry, 2005, 280, 21837-21846.	1.6	57
31	Reversible and non-competitive antagonist profile of CPCCOEt at the human type $1\hat{l}\pm$ metabotropic glutamate receptor. Neuropharmacology, 1998, 37, 1645-1647.	2.0	56
32	Role of Ca2+ Feedback on Single Cell Inositol 1,4,5-Trisphosphate Oscillations Mediated by G-protein-coupled Receptors. Journal of Biological Chemistry, 2003, 278, 20753-20760.	1.6	56
33	Changes in Inositol 1,4,5-Trisphosphate and Inositol 1,3,4,5-Tetrakisphosphate Mass Accumulations in Cultured Adrenal Chromaffin Cells in Response to Bradykinin and Histamine. Journal of Neurochemistry, 1991, 56, 1083-1086.	2.1	55
34	Quantitative Analysis Reveals Multiple Mechanisms of Allosteric Modulation of the mGlu5 Receptor in Rat Astroglia. Molecular Pharmacology, 2011, 79, 874-885.	1.0	54
35	Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE, 2011, 6, e19011.	1.1	54
36	G Protein Coupling and Signaling Pathway Activation by M1 Muscarinic Acetylcholine Receptor Orthosteric and Allosteric Agonists. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 365-374.	1.3	52

#	Article	IF	CITATIONS
37	Visualizing phosphoinositide signalling in single neurons gets a green light. Trends in Neurosciences, 2003, 26, 444-452.	4.2	51
38	G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors. Biochemical Pharmacology, 2012, 84, 249-259.	2.0	51
39	A modulatory effect of extracellular Ca2+ on type $1\hat{l}\pm$ metabotropic glutamate receptor-mediated signalling. Neuropharmacology, 1998, 37, 273-276.	2.0	50
40	Characterization of the adenosine receptor modulating insulin action in rat skeletal muscle. European Journal of Pharmacology, 1992, 226, 121-128.	2.7	49
41	Effects of varying the expression level of recombinant human $mGlu1\hat{l}\pm$ receptors on the pharmacological properties of agonists and antagonists. British Journal of Pharmacology, 1999, 126, 873-882.	2.7	47
42	Selective Regulation of H ₁ Histamine Receptor Signaling by G Protein-Coupled Receptor Kinase 2 in Uterine Smooth Muscle Cells. Molecular Endocrinology, 2008, 22, 1893-1907.	3.7	47
43	Reassessment of the Ca2+ Sensing Property of a Type I Metabotropic Glutamate Receptor by Simultaneous Measurement of Inositol 1,4,5-Trisphosphate and Ca2+ in Single Cells. Journal of Biological Chemistry, 2001, 276, 19286-19293.	1.6	46
44	Effects of chronic administration of vanadate to the rat on the sensitivity of glycolysis and glycogen synthesis in skeletal muscle to insulin. Biochemical Pharmacology, 1987, 36, 357-361.	2.0	45
45	Neurotransmitter and Depolarization-Stimulated Accumulation of Inositol 1,3,4,5-Tetrakisphosphate Mass in Rat Cerebral Cortex Slices. Journal of Neurochemistry, 1990, 54, 2138-2141.	2.1	44
46	Depolarization and Agonist-Stimulated Changes in Inositol 1,4,5-Trisphosphate and Inositol 1,3,4,5-Tetrakisphosphate Mass Accumulation in Rat Cerebral Cortex. Journal of Neurochemistry, 1991, 57, 1042-1051.	2.1	44
47	Endogenous G Protein-coupled Receptor Kinase 6 Regulates M3 Muscarinic Acetylcholine Receptor Phosphorylation and Desensitization in Human SH-SY5Y Neuroblastoma Cells. Journal of Biological Chemistry, 2002, 277, 15523-15529.	1.6	44
48	Altered M1 Muscarinic Acetylcholine Receptor (CHRM1)-G \hat{i} +q/11 Coupling in a Schizophrenia Endophenotype. Neuropsychopharmacology, 2009, 34, 2156-2166.	2.8	44
49	Imaging of Muscarinic Acetylcholine Receptor Signaling in Hippocampal Neurons: Evidence for Phosphorylation-Dependent and -Independent Regulation by G-Protein-Coupled Receptor Kinases. Journal of Neuroscience, 2004, 24, 4157-4162.	1.7	43
50	Modulatory effects of NMDA on phosphoinositide responses evoked by the metabotropic glutamate receptor agonist $1 < b > S < /b > 3 < b > R < /b > â \in ACPD$ in neonatal rat cerebral cortex. British Journal of Pharmacology, 1994, 112, 231-239.	2.7	42
51	Divalent Cation Entry in Cultured Rat Cerebellar Granule Cells Measured Using Mn2+Quench of Fura 2 Fluorescence. European Journal of Neuroscience, 1995, 7, 831-840.	1.2	42
52	G Protein-Coupled Receptor Kinases 3 and 6 Use Different Pathways to Desensitize the Endogenous M3 Muscarinic Acetylcholine Receptor in Human SH-SY5Y Cells. Molecular Pharmacology, 2001, 60, 321-330.	1.0	42
53	Specificity of G Protein-Coupled Receptor Kinase 6-Mediated Phosphorylation and Regulation of Single-Cell M3 Muscarinic Acetylcholine Receptor Signaling. Molecular Pharmacology, 2003, 64, 1059-1068.	1.0	42
54	Pharmacological characterization of type $1\hat{l}_{\pm}$ metabotropic glutamate receptor-stimulated [35 S]-GTP \hat{l}_{3} S binding. British Journal of Pharmacology, 1997, 121, 1203-1209.	2.7	40

#	Article	IF	CITATIONS
55	Platelet-activating factor stimulates a rapid accumulation of inositol (1,4,5)trisphosphate in guinea pig eosinophils: Relationship to calcium mobilization and degranulation. Journal of Allergy and Clinical Immunology, 1991, 88, 114-124.	1.5	39
56	M3 muscarinic cholinoceptors are linked to phosphoinositide metabolism in rat cerebellar granule cells. European Journal of Pharmacology, 1991, 206, 181-189.	2.7	39
57	Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exerciseâ€trained rats. Acta Physiologica Scandinavica, 1989, 136, 177-184.	2.3	38
58	Regulation of Oxytocin Receptor Responsiveness by G Protein-Coupled Receptor Kinase 6 in Human Myometrial Smooth Muscle. Molecular Endocrinology, 2009, 23, 1272-1280.	3.7	38
59	Cell type-specific differences in the coupling of recombinant mGlu1α receptors to endogenous G protein sub-populations. Neuropharmacology, 2001, 40, 645-656.	2.0	37
60	A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: An unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie, 2011, 93, 2132-2138.	1.3	37
61	Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nature Chemical Biology, 2020, 16, 240-249.	3.9	36
62	G protein-coupled receptor kinase 2 and arrestin2 regulate arterial smooth muscle P2Y-purinoceptor signalling. Cardiovascular Research, 2011, 89, 193-203.	1.8	34
63	Principal role of adenylyl cyclase 6 in K+ channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovascular Research, 2011, 91, 694-702.	1.8	34
64	Structural aspects of M ₃ muscarinic acetylcholine receptor dimer formation and activation. FASEB Journal, 2012, 26, 604-616.	0.2	34
65	An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875.	1.6	34
66	Hormonal regulation of the rate of the glycogen/glucose-1-phosphate cycle in skeletal muscle. FEBS Journal, 1987, 163, 205-210.	0.2	33
67	Evidence for cross-talk between M2 and M3 muscarinic acetylcholine receptors in the regulation of second messenger and extracellular signal-regulated kinase signalling pathways in Chinese hamster ovary cells. British Journal of Pharmacology, 2003, 138, 1340-1350.	2.7	33
68	Roles of Phosphorylation-dependent and -independent Mechanisms in the Regulation of M1 Muscarinic Acetylcholine Receptors by G Protein-coupled Receptor Kinase 2 in Hippocampal Neurons. Journal of Biological Chemistry, 2005, 280, 18950-18958.	1.6	33
69	Contrasting Effects of Allosteric and Orthosteric Agonists on M ₁ Muscarinic Acetylcholine Receptor Internalization and Down-regulation. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 1086-1095.	1.3	33
70	Nitric Oxide Synthesis and cGMP Production Is Important for Neurite Growth and Synapse Remodeling after Axotomy. Journal of Neuroscience, 2013, 33, 5626-5637.	1.7	33
71	Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen systhesis to insulin in muscles of the rat. International Journal of Biochemistry & Cell Biology, 1988, 20, 23-27.	0.8	32
72	Effects of selective phosphodiesterase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices. British Journal of Pharmacology, 1990, 99, 47-52.	2.7	32

#	Article	IF	CITATIONS
73	Characterisation of stereospecific binding sites for inositol 1,4,5â€trisphosphate in airway smooth muscle. British Journal of Pharmacology, 1990, 99, 297-302.	2.7	32
74	Cannabinoid CB1receptors fail to cause relaxation, but coupleviaGi/Goto the inhibition of adenylyl cyclase in carotid artery smooth muscle. British Journal of Pharmacology, 1999, 128, 597-604.	2.7	31
75	Synaptic Activity Augments Muscarinic Acetylcholine Receptor-stimulated Inositol 1,4,5-Trisphosphate Production to Facilitate Ca2+ Release in Hippocampal Neurons. Journal of Biological Chemistry, 2004, 279, 49036-49044.	1.6	30
76	Characterization of Anandamide-Stimulated Cannabinoid Receptor Signaling in Human ULTR Myometrial Smooth Muscle Cells. Molecular Endocrinology, 2009, 23, 1415-1427.	3.7	30
77	An investigation of whether agonist-selective receptor conformations occur with respect to M2 and M4 muscarinic acetylcholine receptor signalling via Gi/o and Gs proteins. British Journal of Pharmacology, 2005, 144, 566-575.	2.7	29
78	Role of protein kinase C in the regulation of histamine and bradykinin stimulated inositol polyphosphate turnover in adrenal chromaffin cells. British Journal of Pharmacology, 1992, 107, 1140-1145.	2.7	28
79	Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biology, 2018, 16, e2003611.	2.6	28
80	Lack of effect of zaprinast on methacholineâ€induced contraction and inositol 1,4,5â€trisphosphate accumulation in bovine tracheal smooth muscle. British Journal of Pharmacology, 1991, 103, 1119-1125.	2.7	27
81	Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists. British Journal of Pharmacology, 1998, 123, 581-589.	2.7	27
82	Altered Expression of $Gq/11\hat{l}_{\pm}$ Protein Shapes mGlu1 and mGlu5 Receptor-Mediated Single Cell Inositol 1,4,5-Trisphosphate and Ca2+ Signaling. Molecular Pharmacology, 2006, 69, 174-184.	1.0	27
83	Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2008, 75, 942-955.	2.0	26
84	Novel Structural and Functional Insights into M3 Muscarinic Receptor Dimer/Oligomer Formation. Journal of Biological Chemistry, 2013, 288, 34777-34790.	1.6	26
85	Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to cyclic AMP response element binding protein (CREB) through a common Ca2+- and protein kinase C-dependent pathway. Journal of Neurochemistry, 2005, 93, 232-245.	2.1	25
86	An animal model of mitochondrial myopathy: A biochemical and physiological investigation of rats treated in vivo with the NADH-CoQ reductase inhibitor, diphenyleneiodonium. Journal of the Neurological Sciences, 1988, 83, 335-347.	0.3	24
87	Chronic Activation of Muscarinic and Metabotropic Glutamate Receptors Down-Regulates Type I Inositol 1,4,5-Trisphosphate Receptor Expression in Cerebellar Granule Cells. Journal of Neurochemistry, 2002, 63, 2369-2372.	2.1	24
88	Constitutive Activity and Inverse Agonism at the M2 Muscarinic Acetylcholine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 279-288.	1.3	24
89	Temporal profiling of changes in phosphatidylinositol 4,5â€bisphosphate, inositol 1,4,5â€trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase Câ€initiated signalling in single neurons ¹ . Journal of Neurochemistry, 2008, 107, 602-615.	2.1	24
90	Pharmacological Assessment of M ₁ Muscarinic Acetylcholine Receptor-G _{q/11} Protein Coupling in Membranes Prepared from Postmortem Human Brain Tissue. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 869-874.	1.3	24

#	Article	IF	CITATIONS
91	Effects of Positive Allosteric Modulators on Single-Cell Oscillatory Ca ²⁺ Signaling Initiated by the Type 5 Metabotropic Glutamate Receptor. Molecular Pharmacology, 2009, 76, 1302-1313.	1.0	24
92	Maximal activities of hexokinase, 6-phosphofructokinase, oxoglutarate dehydrogenase, and carnitine palmitoyltransferase in rat and avian muscles. Bioscience Reports, 1983, 3, 1149-1153.	1.1	23
93	Effect of a novel thermogenic \hat{l}^2 -adrenoceptor agonist (BRL 26830) on insulin resistance in soleus muscle from obese Zucker rats. Biochemical and Biophysical Research Communications, 1985, 128, 928-935.	1.0	23
94	Comparative effects of BRL 38227, nitrendipine and isoprenaline on carbachol―and histamineâ€stimulated phosphoinositide metabolism in airway smooth muscle. British Journal of Pharmacology, 1992, 105, 997-1003.	2.7	23
95	Comparison of the effect of isobutylmethylxanthine and phosphodiesterase-selective inhibitors on cAMP levels in SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 1993, 45, 2373-2380.	2.0	23
96	Inhibition of N-linked glycosylation of the human type 1α metabotropic glutamate receptor by tunicamycin: effects on cell-surface receptor expression and function. Neuropharmacology, 1999, 38, 1485-1492.	2.0	23
97	Complex Involvement of Pertussis Toxin-Sensitive G Proteins in the Regulation of Type 1α Metabotropic Glutamate Receptor Signaling in Baby Hamster Kidney Cells. Molecular Pharmacology, 2000, 58, 352-360.	1.0	23
98	Arrestins differentially regulate histamine―and oxytocinâ€evoked phospholipase C and mitogenâ€ectivated protein kinase signalling in myometrial cells. British Journal of Pharmacology, 2011, 162, 1603-1617.	2.7	23
99	Comparative Effects of Lithium on the Phosphoinositide Cycle in Rat Cerebral Cortex, Hippocampus, and Striatum. Journal of Neurochemistry, 1993, 61, 1082-1090.	2.1	21
100	NMDAâ€receptor regulation of muscarinicâ€receptor stimulated inositol 1,4,5â€trisphosphate production and protein kinase C activation in single cerebellar granule neurons. Journal of Neurochemistry, 2004, 89, 1537-1546.	2.1	21
101	Muscarinic acetylcholine receptor activation enhances hippocampal neuron excitability and potentiates synaptically evoked Ca2+ signals via phosphatidylinositol 4,5-bisphosphate depletion. Molecular and Cellular Neurosciences, 2005, 30, 48-57.	1.0	21
102	Defining protein kinase/phosphatase isoenzymic regulation of mGlu ₅ receptorâ€stimulated phospholipase C and Ca ²⁺ responses in astrocytes. British Journal of Pharmacology, 2011, 164, 755-771.	2.7	20
103	Distinct and complementary roles for \hat{l}_{\pm} and \hat{l}_{\pm}^2 isoenzymes of PKC in mediating vasoconstrictor responses to acutely elevated glucose. British Journal of Pharmacology, 2016, 173, 870-887.	2.7	19
104	Increased insulin sensitivity in soleus muscle from cold-exposed rats: reversal by an adenosine-receptor agonist. FEBS Letters, 1984, 175, 402-406.	1.3	18
105	Characteristics of inositol 1,4,5-trisphosphate binding to rat cerebellar and bovine adrenal cortical membranes: evidence for the heterogeneity of binding sites. European Journal of Pharmacology, 1990, 189, 185-193.	2.7	18
106	Comparative effects of activation of soluble and particulate guanylyl cyclase on cyclic GMP elevation and relaxation of bovine tracheal smooth muscle. British Journal of Pharmacology, 1995, 115, 723-732.	2.7	18
107	Enhanced Type 1α Metabotropic Glutamate Receptor-Stimulated Phosphoinositide Signaling after Pertussis Toxin Treatment. Molecular Pharmacology, 1997, 52, 406-414.	1.0	18
108	Synthesis and Biological Evaluation of Cyclophostin: A 5′,6″-Tethered Analog of Adenophostin A. Tetrahedron, 2000, 56, 5915-5928.	1.0	18

#	Article	IF	Citations
109	Characterization of an N-terminal secreted domain of the type-1 human metabotropic glutamate receptor produced by a mammalian cell line. Journal of Neurochemistry, 2002, 80, 346-353.	2.1	18
110	D-[35S(U)]Inositol 1,4,5-trisphosphorothioate, a novel radioligand for the inositol 1,4,5-trisphosphate receptor Complex binding to rat cerebellar membranes. FEBS Letters, 1991, 281, 101-104.	1.3	17
111	Disruption of phosphoinositide signalling by lithium. Biochemical Society Transactions, 1992, 20, 430-434.	1.6	17
112	Correlation of cyclic AMP accumulation and relaxant actions of salmeterol and salbutamol in bovine tracheal smooth muscle. British Journal of Pharmacology, 1995, 116, 2510-2516.	2.7	17
113	Regulation of neuronal plasticity and fear by a dynamic change in PAR1–G protein coupling in the amygdala. Molecular Psychiatry, 2013, 18, 1136-1145.	4.1	17
114	FRET-Based Detection of M1 Muscarinic Acetylcholine Receptor Activation by Orthosteric and Allosteric Agonists. PLoS ONE, 2012, 7, e29946.	1.1	17
115	A Single Point Mutation (N514Y) in the Human M3 Muscarinic Acetylcholine Receptor Reveals Differences in the Properties of Antagonists: Evidence for Differential Inverse Agonism. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1134-1142.	1.3	16
116	Assessment of Neuronal Phosphoinositide Turnover and Its Disruption by Lithium. Methods, 1993, 3, 135-144.	0.5	15
117	The Novel Ins(1,4,5)P3 Analog 3-Amino-3-deoxy-Ins(1,4,5)P3: A pH-Dependent Ins(1,4,5)P3 Receptor Partial Agonist in SH-SY5Y Neuroblastoma Cells. Journal of Medicinal Chemistry, 1994, 37, 868-872.	2.9	15
118	Characterization of an atypical muscarinic cholinoceptor mediating contraction of the guinea-pig isolated uterus. British Journal of Pharmacology, 1998, 124, 1615-1622.	2.7	15
119	Second messenger and ionic modulation of agonist-stimulated phosphoinositide turnover in airway smooth muscle. Biochemical Society Transactions, 1993, 21, 1138-1145.	1.6	14
120	Differential Effects of Lithium on Muscarinic Cholinoceptor-Stimulated CMP-Phosphatidate Accumulation in Cerebellar Granule Cells, CHO-M3 Cells, and SH-SY5Y Neuroblastoma Cells. Journal of Neurochemistry, 2002, 63, 1354-1360.	2.1	14
121	Inositol 1,4,5â€trisphosphateâ€stimulated calcium release from permeabilized cerebellar granule cells. British Journal of Pharmacology, 1991, 104, 202-206.	2.7	13
122	Molecular mechanisms of muscarinic acetylcholine receptor–stimulated increase in cytosolic free Ca2+ concentration and ERK1/2 activation in the MIN6 pancreatic β-cell line. Acta Diabetologica, 2012, 49, 277-289.	1.2	13
123	Inhibitory action of the potassium channel opener BRL 38227 on agonist-stimulated phosphoinositide metabolism in bovine tracheal smooth muscle. Biochemical Pharmacology, 1992, 43, 17-20.	2.0	12
124	Modulation of NMDA effects on agonistâ€stimulated phosphoinositide turnover by memantine in neonatal rat cerebral cortex. British Journal of Pharmacology, 1995, 114, 797-804.	2.7	12
125	Acute regulation of the receptor-mediated phosphoinositide signal transduction pathway. Journal of Lipid Mediators and Cell Signalling, 1996, 14, 157-168.	1.0	12
126	Modulation of spasmogen-stimulated Ins(1,4,5)P3 generation and functional responses by selective inhibitors of types 3 and 4 phosphodiesterase in airways smooth muscle. British Journal of Pharmacology, 1998, 124, 47-54.	2.7	12

#	Article	IF	CITATIONS
127	Spirophostins: Conformationally Restricted Analogues of Adenophostin A. Chemistry - A European Journal, 2000, 6, 2696-2704.	1.7	12
128	Enhanced inducible mGlu1 \hat{l} ± receptor expression in Chinese hamster ovary cells. Journal of Neurochemistry, 2001, 77, 1664-1667.	2.1	12
129	The regulation of M1muscarinic acetylcholine receptor desensitization by synaptic activity in cultured hippocampal neurons. Journal of Neurochemistry, 2007, 103, 2268-2280.	2.1	12
130	Small-Molecule G Protein–Coupled Receptor Kinase Inhibitors Attenuate G Protein–Coupled Receptor Kinase 2–Mediated Desensitization of Vasoconstrictor-Induced Arterial Contractions. Molecular Pharmacology, 2018, 94, 1079-1091.	1.0	12
131	Modulation of receptor-mediated inositol phospholipid breakdown in the brain. Neurochemistry International, 1991, 19, 207-212.	1.9	11
132	Long-Term Channel Block Is Required to Inhibit Cellular Transformation by Human Ether-Ã-Go-Go–Related Gene (hERG1) Potassium Channels. Molecular Pharmacology, 2014, 86, 211-221.	1.0	11
133	Differential regulation of \hat{l}^2 2-adrenoceptor and adenosine A2B receptor signalling by GRK and arrestin proteins in arterial smooth muscle. Cellular Signalling, 2018, 51, 86-98.	1.7	11
134	Effects of dipyridamole on adenosine concentration, insulin sensitivity and glucose utilisation in soleus muscle of the rat. Pflugers Archiv European Journal of Physiology, 1987, 410, 192-197.	1.3	10
135	Steady-State Modulation of Voltage-Gated K+ Channels in Rat Arterial Smooth Muscle by Cyclic AMP-Dependent Protein Kinase and Protein Phosphatase 2B. PLoS ONE, 2015, 10, e0121285.	1.1	10
136	Intracellular recognition sites for inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate. Biochemical Society Transactions, 1991, 19, 888-893.	1.6	9
137	Early Failure of N-Methyl-d-aspartate Receptors and Deficient Spine Formation Induced by Reduction of Regulatory Heme in Neurons. Molecular Pharmacology, 2011, 79, 844-854.	1.0	9
138	Studies of the protective effect of ribose in myocardial ischaemia by using 31P-nuclearmagnetic-resonance spectroscopy. Biochemical Society Transactions, 1985, 13, 885-886.	1.6	8
139	Stimulatory effects of the putative metabotropic glutamate receptor antagonist Lâ€AP3 on phosphoinositide turnover in neonatal rat cerebral cortex. British Journal of Pharmacology, 1996, 117, 1309-1317.	2.7	8
140	Dissociation between \hat{l}^2 -adrenoceptor-mediated cyclic AMP accumulation and inhibition of histarnine-stimulated phosphoinositide metabolism in airways smooth muscle. Biochemical Pharmacology, 1997, 53, 1565-1568.	2.0	8
141	GPCR–G protein preassembly?. Nature Chemical Biology, 2011, 7, 657-658.	3.9	8
142	[<scp><scp>Ca²⁺</scp></scp>] _i oscillations in <scp>ASM</scp> : Relationship with persistent airflow obstruction in asthma. Respirology, 2014, 19, 763-766.	1.3	8
143	Exercise-Induced Improvement in the Sensitivity of the Rat Soleus Muscle to Insulin Is Reversed by Chloroadenosine-The Adenosine Receptor Agonist. Biochemical Medicine and Metabolic Biology, 1993, 50, 18-23.	0.7	7
144	Effects of membrane depolarization and changes in intra- and extracellular calcium concentration on phosphoinositide hydrolysis in bovine tracheal smooth muscle. Biochemical Pharmacology, 1994, 47, 2171-2179.	2.0	7

#	Article	IF	Citations
145	No evidence for altered intracellular calcium-handling in airway smooth muscle cells from human subjects with asthma. BMC Pulmonary Medicine, 2015, 15, 12.	0.8	7
146	Diphenyleneiodonium-induced cardiomyopathy. Biochemical Society Transactions, 1986, 14, 1209-1210.	1.6	6
147	Phospholipase D activation regulates endothelin-1 stimulation of phosphoinositide-specific phospholipase C in SK-N-MC cells. FEBS Letters, 1993, 327, 157-160.	1.3	6
148	Potentiation of elevation of intracellular Ca2+ concentrations by exogenous glycine in cerebellar granule cells. European Journal of Pharmacology, 1994, 266, 309-315.	2.7	6
149	Differences in agonist and antagonist activities for two indices of metabotropic glutamate receptorâ€stimulated phosphoinositide turnover. British Journal of Pharmacology, 1996, 117, 1735-1743.	2.7	6
150	Eglen et al. reply. Trends in Pharmacological Sciences, 1994, 15, 407-408.	4.0	5
151	Investigation of chronic hindlimb ischaemia in the rat by 31P-nuclear-magnetic-resonance spectroscopy. Biochemical Society Transactions, 1985, 13, 888-889.	1.6	4
152	Effect of temperature on muscarinic cholinoceptor-mediated phosphoinositide metabolism and tension generation in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 585-91.	1.4	4
153	Muscarinic Cholinoceptor-Stimulated Synthesis and Degradation of Inositol 1,4,5-Trisphosphate in the Rat Cerebellar Granule Cell. Journal of Neurochemistry, 2002, 64, 1143-1151.	2.1	4
154	Expression of Insect Olfactory Receptors for Biosensing on SAW Sensors. Procedia Computer Science, 2011, 7, 281-282.	1.2	4
155	Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor. Molecular Pharmacology, 2018, 94, 674-688.	1.0	4
156	A 31P-NMR study of the acute effects of altered \hat{l}^2 -adrenoceptor stimulation on the bioenergetics of skeletal muscle during contraction. Biochemical Pharmacology, 1988, 37, 4653-4659.	2.0	3
157	Heterologous mammalian expression systems for investigating the properties of metabotropic glutamate receptors. Biochemical Society Transactions, 1999, 27, 164-170.	1.6	2
158	\hat{l}^21 -adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent. Biochemical Pharmacology, 2020, 177, 114035.	2.0	2
159	Neuronal muscarinic receptors and phosphoinositide metabolism. Biochemical Society Transactions, 1991, 19, 416-421.	1.6	1
160	Quantitation of the lithium-sensitive component of the muscarinic receptor-stimulated inositol 1,3,4,5-tetrakisphosphate response in rat cerebral cortex. Biochemical Society Transactions, 1992, 20, 137S-137S.	1.6	1
161	Detection of ligand-elicited cellular responses using Surface Acoustic Wave biosensors. Procedia Computer Science, 2011, 7, 346-347.	1.2	1
162	British Pharmacological Society, 5th Focused Meeting on Cell Signalling: Matters arising …. British Journal of Pharmacology, 2015, 172, 3194-3195.	2.7	0