Donald N Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2419534/publications.pdf

Version: 2024-02-01

106 papers 10,372 citations

50276 46 h-index 95 g-index

108 all docs

 $\begin{array}{c} 108 \\ \\ \text{docs citations} \end{array}$

108 times ranked 13563 citing authors

#	Article	IF	CITATIONS
1	Bridged Piperidine Analogues of a High Affinity Naphthalene-Based P2Y ₁₄ R Antagonist. Journal of Medicinal Chemistry, 2022, 65, 3434-3459.	6.4	6
2	A neutrophil/TGF- \hat{l}^2 axis limits the pathogenicity of allergen-specific CD4+ T cells. JCI Insight, 2022, 7, .	5.0	0
3	Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. Journal of Immunology, 2021, 206, 292-301.	0.8	6
4	Structureâ€"Activity Relationship of Heterocyclic P2Y14 Receptor Antagonists: Removal of the Zwitterionic Character with Piperidine Bioisosteres. Journal of Medicinal Chemistry, 2021, 64, 5099-5122.	6.4	11
5	Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Frontiers in Immunology, 2021, 12, 661290.	4.8	3
6	UDP-glucose and P2Y14 receptor amplify allergen-induced airway eosinophilia. Journal of Clinical Investigation, 2021, 131, .	8. 2	21
7	A new wrinkle for skin dendritic cell migration. Blood, 2021, 137, 2716-2717.	1.4	O
8	Adipocyte P2Y14 receptors play a key role in regulating whole-body glucose and lipid homeostasis. JCI Insight, $2021, 6, .$	5 . O	15
9	Scavenger Receptor Bl Attenuates IL-17A–Dependent Neutrophilic Inflammation in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 698-708.	2.9	10
10	Glucocorticoids and Androgens Protect From Gastric Metaplasia by Suppressing Group 2 Innate Lymphoid Cell Activation. Gastroenterology, 2021, 161, 637-652.e4.	1.3	25
11	CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nature Communications, 2021, 12, 5029.	12.8	34
12	What's the deal with efferocytosis and asthma?. Trends in Immunology, 2021, 42, 904-919.	6.8	7
13	(Inverse) Agonists of Retinoic Acid–Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annual Review of Pharmacology and Toxicology, 2020, 60, 371-390.	9.4	58
14	Exploration of Alternative Scaffolds for P2Y ₁₄ Receptor Antagonists Containing a Biaryl Core. Journal of Medicinal Chemistry, 2020, 63, 9563-9589.	6.4	20
15	Role of Environmental Adjuvants in Asthma Development. Current Allergy and Asthma Reports, 2020, 20, 42.	5. 3	6
16	Cholesterol-25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight, 2020, 5, .	5.0	35
17	Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by an ROR \hat{I}^3 t inverse agonist. JCI Insight, 2019, 4, .	5.0	19
18	Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation. Journal of Clinical Investigation, 2019, 129, 1345-1358.	8.2	28

#	Article	IF	CITATIONS
19	Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. Journal of Clinical Investigation, 2019, 130, 157-170.	8.2	24
20	Pathogenic TH17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling. Journal of Allergy and Clinical Immunology, 2018, 142, 1229-1242.e6.	2.9	9
21	Early Endometriosis in Females Is Directed by Immune-Mediated Estrogen Receptor α and IL-6 Cross-Talk. Endocrinology, 2018, 159, 103-118.	2.8	75
22	MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens. Mucosal Immunology, 2018, 11, 796-810.	6.0	18
23	Isolation and Purification of Epithelial and Endothelial Cells from Mouse Lung. Methods in Molecular Biology, 2018, 1799, 59-69.	0.9	29
24	Imaging Precision-Cut Lung Slices to Visualize Leukocyte Localization and Trafficking. Methods in Molecular Biology, 2018, 1799, 237-246.	0.9	1
25	Neuropilin-2 regulates airway inflammatory responses to inhaled lipopolysaccharide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L202-L211.	2.9	19
26	Distinct functions of CXCR4, CCR2, and CX3CR1 direct dendritic cell precursors from the bone marrow to the lung. Journal of Leukocyte Biology, 2017, 101, 1143-1153.	3.3	42
27	Environmental Adjuvants Induce Neuropilin-2 Expression in Human and Murine Alveolar Macrophages. Journal of Allergy and Clinical Immunology, 2017, 139, AB265.	2.9	0
28	NIAID, NIEHS, NHLBI, and MCAN Workshop Report: The indoor environment and childhood asthma—implications for home environmental intervention in asthma prevention and management. Journal of Allergy and Clinical Immunology, 2017, 140, 933-949.	2.9	75
29	Reversing SKI–SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature, 2017, 551, 105-109.	27.8	88
30	Precision-cut Mouse Lung Slices to Visualize Live Pulmonary Dendritic Cells. Journal of Visualized Experiments, 2017, , .	0.3	32
31	TNF is required for TLR ligand–mediated but not protease-mediated allergic airway inflammation. Journal of Clinical Investigation, 2017, 127, 3313-3326.	8.2	35
32	Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. Nuclear Receptor Research, 2015, 2, .	2.5	136
33	Complement Receptor C5aR1/CD88 and Dipeptidyl Peptidase-4/CD26 Define Distinct Hematopoietic Lineages of Dendritic Cells. Journal of Immunology, 2015, 194, 3808-3819.	0.8	52
34	Pulmonary Dendritic Cells. , 2015, , 651-664.		0
35	Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation. Mucosal Immunology, 2015, 8, 863-873.	6.0	83
36	Trif-dependent induction of Th17 immunity by lung dendritic cells. Mucosal Immunology, 2015, 8, 186-197.	6.0	17

#	Article	IF	CITATIONS
37	Inhaled house dust programs pulmonary dendritic cells to promote type 2 T-cell responses by an indirect mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1208-L1218.	2.9	18
38	Modulation of Distinct Asthmatic Phenotypes in Mice by Dose-Dependent Inhalation of Microbial Products. Environmental Health Perspectives, 2014, 122, 34-42.	6.0	32
39	Epigenetic Control of <i>Ccr7</i> Expression in Distinct Lineages of Lung Dendritic Cells. Journal of Immunology, 2014, 193, 4904-4913.	0.8	40
40	Migratory properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunology, 2013, 6, 678-691.	6.0	65
41	CC chemokine receptor 8 potentiates donor Treg survival and is critical for the prevention of murine graft-versus-host disease. Blood, 2013, 122, 825-836.	1.4	58
42	Pulmonary Antigen Presenting Cells: Isolation, Purification, and Culture. Methods in Molecular Biology, 2013, 1032, 19-29.	0.9	19
43	Hyperoxia enhances response to respiratory syncytial virus (RSV) infection. FASEB Journal, 2013, 27, 1212.12.	0.5	0
44	Pulmonary CD103+ dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunology, 2012, 5, 53-65.	6.0	140
45	ATP Binding Cassette Transporter G1 Deletion Induces IL-17–Dependent Dysregulation of Pulmonary Adaptive Immunity. Journal of Immunology, 2012, 188, 5327-5336.	0.8	30
46	The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nature Medicine, 2012, 18, 1705-1710.	30.7	106
47	IL-35 production by inducible costimulator (ICOS)–positive regulatory T cells reverses established IL-17–dependent allergic airways disease. Journal of Allergy and Clinical Immunology, 2012, 129, 207-215.e5.	2.9	159
48	The TLR5 Ligand, Bacterial Flagellin, Is The Major Adjuvant In Common House Dust. , 2011, , .		0
49	The Cholesterol Transporter ATP Binding Cassette G1 Regulates Allergen-Induced Pulmonary Inflammation. , $2011, , .$		0
50	Strain-Dependent Genomic Factors Affect Allergen-Induced Airway Hyperresponsiveness in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 817-824.	2.9	59
51	Cyclooxygenase-2 Regulates Th17 Cell Differentiation during Allergic Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 37-49.	5.6	57
52	The Chemokine, CCL3, and Its Receptor, CCR1, Mediate Thoracic Radiation–Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 127-135.	2.9	47
53	Effects of air pollutants on allergic sensitization through the airway. , 2011, , 139-156.		1
54	Bacterial Flagellin Acts As A Powerful Adjuvant For Th2 And Th17 Sensitization Through The Airway. , 2010, , .		0

#	Article	IF	CITATIONS
55	Induction And Suppression Of IL-17-dependent Airway Neutrophilia And Hyperresponsiveness., 2010,,.		O
56	Ozone activates pulmonary dendritic cells and promotes allergic sensitization through a Toll-like receptor 4–dependent mechanism. Journal of Allergy and Clinical Immunology, 2010, 125, 1167-1170.	2.9	33
57	Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 720-730.	5.6	354
58	Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nature Immunology, 2009, 10, 394-402.	14.5	294
59	The Chemokine Receptor D6 Has Opposing Effects on Allergic Inflammation and Airway Reactivity. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 243-249.	5.6	79
60	Innate Immune Control of Pulmonary Dendritic Cell Trafficking. Proceedings of the American Thoracic Society, 2007, 4, 234-239.	3.5	47
61	Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2319-2324.	7.1	171
62	Alloimmune Lung Injury Induced by Local Innate Immune Activation Through Inhaled Lipopolysaccharide. Transplantation, 2007, 84, 1012-1019.	1.0	41
63	The chemokine receptor CCR6 is an important component of the innate immune response. European Journal of Immunology, 2007, 37, 2487-2498.	2.9	27
64	Toll-like receptors and airway disease. , 2006, , 63-86.		1
64	Toll-like receptors and airway disease. , 2006, , 63-86. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924.	14.8	1,334
	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9,	14.8	
65	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924. Spontaneous Mutations in Recombinant Inbred Mice: Mutant Toll-like Receptor 4 (Tlr4) in BXD29 Mice.		1,334
65	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924. Spontaneous Mutations in Recombinant Inbred Mice: Mutant Toll-like Receptor 4 (Tlr4) in BXD29 Mice. Genetics, 2006, 172, 1751-1755.	2.9	1,334
65 66 67	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924. Spontaneous Mutations in Recombinant Inbred Mice: Mutant Toll-like Receptor 4 (Tlr4) in BXD29 Mice. Genetics, 2006, 172, 1751-1755. TLR4 Signaling Attenuates Ongoing Allergic Inflammation. Journal of Immunology, 2006, 176, 5856-5862. Cutting Edge: The Silent Chemokine Receptor D6 Is Required for Generating T Cell Responses That	2.9	1,334 10 94
65 66 67 68	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924. Spontaneous Mutations in Recombinant Inbred Mice: Mutant Toll-like Receptor 4 (Tlr4) in BXD29 Mice. Genetics, 2006, 172, 1751-1755. TLR4 Signaling Attenuates Ongoing Allergic Inflammation. Journal of Immunology, 2006, 176, 5856-5862. Cutting Edge: The Silent Chemokine Receptor D6 Is Required for Generating T Cell Responses That Mediate Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 17-21. The chemokine receptor D6 limits the inflammatory response in vivo. Nature Immunology, 2005, 6,	2.9 0.8 0.8	1,334 10 94 70
65 66 67 68	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924. Spontaneous Mutations in Recombinant Inbred Mice: Mutant Toll-like Receptor 4 (Tlr4) in BXD29 Mice. Genetics, 2006, 172, 1751-1755. TLR4 Signaling Attenuates Ongoing Allergic Inflammation. Journal of Immunology, 2006, 176, 5856-5862. Cutting Edge: The Silent Chemokine Receptor D6 Is Required for Generating T Cell Responses That Mediate Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 17-21. The chemokine receptor D6 limits the inflammatory response in vivo. Nature Immunology, 2005, 6, 403-411. Increased inflammation in mice deficient for the chemokine decoy receptor D6. European Journal of	2.9 0.8 0.8	1,334 10 94 70 279

#	Article	IF	Citations
73	Polymorphisms of the Toll-Like Receptors and Human Disease. Clinical Infectious Diseases, 2005, 41, S403-S407.	5.8	51
74	CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine, 2005, 11 , $1180-1187$.	30.7	263
75	The Role of Toll-like Receptor 4 in Environmental Airway Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 126-132.	5.6	152
76	Toll-like receptors in the pathogenesis of human disease. Nature Immunology, 2004, 5, 975-979.	14.5	809
77	Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nature Medicine, 2004, 10, 510-517.	30.7	298
78	Tachykinin NK3-receptor deficiency does not inhibit pulmonary eosinophilia in allergic mice. Pharmacological Research, 2004, 50, 611-615.	7.1	48
79	Genetic regulation of endotoxin-induced airway disease. Genomics, 2004, 83, 961-969.	2.9	34
80	The Genetics of Innate Immunity in the Lung. Chest, 2003, 123, 369S.	0.8	7
81	Toll-like receptors and the genetics of innate immunity. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 523-529.	2.3	17
82	A Matrix for New Ideas in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 122-124.	2.9	41
83	Impaired T Cell Function in RANTES-Deficient Mice. Clinical Immunology, 2002, 102, 302-309.	3.2	107
84	Wound Healing in MIP-1αâ^'/â^' and MCP-1â^'/â^' Mice. American Journal of Pathology, 2001, 159, 457-463.	3.8	289
85	Leukocytes Expressing Green Fluorescent Protein as Novel Reagents for Adoptive Cell Transfer and Bone Marrow Transplantation Studies. American Journal of Pathology, 2001, 158, 41-47.	3.8	44
86	Macrophage inflammatory protein- \hat{l}_{\pm} uses a novel receptor for primitive hemopoietic cell inhibition. Blood, 2001, 98, 3476-3478.	1.4	15
87	Regulatory Effects of Macrophage Inflammatory Protein $1\hat{l}\pm$ /CCL3 on the Development of Immunity to Cryptococcus neoformans Depend on Expression of Early Inflammatory Cytokines. Infection and Immunity, 2001, 69, 6256-6263.	2.2	58
88	Absence of Macrophage-Inflammatory Protein- $\hat{\Pi}$ Delays Central Nervous System Demyelination in the Presence of an Intact Blood-Brain Barrier. Journal of Immunology, 2001, 167, 2964-2971.	0.8	80
89	Generation and Analysis of Mice Lacking the Chemokine Fractalkine. Molecular and Cellular Biology, 2001, 21, 3159-3165.	2.3	143
90	Impaired Pulmonary Host Defense in Mice Lacking Expression of the CXC Chemokine Lungkine. Journal of Immunology, 2001, 166, 3362-3368.	0.8	76

#	Article	IF	CITATIONS
91	Requirement for the Chemokine Receptor Ccr6 in Allergic Pulmonary Inflammation. Journal of Experimental Medicine, 2001, 194, 551-556.	8.5	134
92	Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice. Journal of Experimental Medicine, 2001, 193, 573-584.	8.5	222
93	Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. Journal of Clinical Investigation, 2001, 107, 1591-1598.	8.2	367
94	T-lymphocyte production of macrophage inflammatory protein- $1\hat{l}\pm$ is critical to the recruitment of CD8+ T cells to the liver, lung, and spleen during graft-versus-host disease. Blood, 2000, 96, 2973-2980.	1.4	127
95	The Role of Macrophage Inflammatory Protein- $1\hat{1}\pm$ /CCL3 in Regulation of T Cell-Mediated Immunity to <i>Cryptococcus neoformans</i> li>Infection. Journal of Immunology, 2000, 165, 6429-6436.	0.8	92
96	Differential Expression of CC Chemokines and the CCR5 Receptor in the Pancreas Is Associated with Progression to Type I Diabetes. Journal of Immunology, 2000, 165, 1102-1110.	0.8	144
97	CCR6 Mediates Dendritic Cell Localization, Lymphocyte Homeostasis, and Immune Responses in Mucosal Tissue. Immunity, 2000, 12, 495-503.	14.3	478
98	Murine T Lymphocytes Incapable of Producing Macrophage Inhibitory Protein-1 Are Impaired in Causing Graft-Versus-Host Disease Across a Class I But Not Class II Major Histocompatibility Complex Barrier. Blood, 1999, 93, 43-50.	1.4	40
99	Murine endotoxin-induced uveitis, but not immune complex-induced uveitis, is dependent on the IL-8 receptor homolog. Current Eye Research, 1999, 19, 76-85.	1.5	20
100	Murine T Lymphocytes Incapable of Producing Macrophage Inhibitory Protein-1 Are Impaired in Causing Graft-Versus-Host Disease Across a Class I But Not Class II Major Histocompatibility Complex Barrier. Blood, 1999, 93, 43-50.	1.4	3
101	Absence of Macrophage Inflammatory Protein- $\hat{\Pi}_{\pm}$ Prevents the Development of Blinding Herpes Stromal Keratitis. Journal of Virology, 1998, 72, 3705-3710.	3.4	117
102	Gene targeting strategies to study chemokine function in vivo. Methods in Enzymology, 1997, 287, 186-206.	1.0	0
103	Two chemotactic factors, C5a and MIP- $1\hat{l}$ ±, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP- $1\hat{l}$ ± has a protective role. Molecular Immunology, 1996, 33, 1135-1137.	2.2	22
104	Proliferation of multipotent hematopoietic cells controlled by a truncated erythropoietin receptor transgene Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9402-9407.	7.1	24
105	The role of MIP-1α in Inflammation and hematopoiesis. Journal of Leukocyte Biology, 1996, 59, 61-66.	3.3	194
106	Requirement of Mip-1α for an Inflammatory Response to Viral Infection. Science, 1995, 269, 1583-1585.	12.6	626