Jianhui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2419249/publications.pdf Version: 2024-02-01

Іілмніц 7нц

#	Article	IF	CITATIONS
1	Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrometry Reviews, 2023, 42, 887-917.	5.4	13
2	Glycopeptides with Sialyl Lewis Antigen in Serum Haptoglobin as Candidate Biomarkers for Nonalcoholic Steatohepatitis Hepatocellular Carcinoma Using a Higher-Energy Collision-Induced Dissociation Parallel Reaction Monitoring-Mass Spectrometry Method. ACS Omega, 2022, 7, 22850-22860.	3.5	10
3	A novel method of highâ€purity extracellular vesicle enrichment from microliterâ€scale human serum for proteomic analysis. Electrophoresis, 2021, 42, 245-256.	2.4	18
4	Intestinal extracellular vesicles are altered by vertical sleeve gastrectomy. American Journal of Physiology - Renal Physiology, 2021, 320, G153-G165.	3.4	3
5	A Panel of Glycopeptides as Candidate Biomarkers for Early Diagnosis of NASH Hepatocellular Carcinoma Using a Stepped HCD Method and PRM Evaluation. Journal of Proteome Research, 2021, 20, 3278-3289.	3.7	23
6	GlycoHybridSeq: Automated Identification of N-Linked Glycopeptides Using Electron Transfer/High-Energy Collision Dissociation (EThcD). Journal of Proteome Research, 2021, 20, 3345-3352.	3.7	9
7	PRM-MS Quantitative Analysis of Isomeric N-Glycopeptides Derived from Human Serum Haptoglobin of Patients with Cirrhosis and Hepatocellular Carcinoma. Metabolites, 2021, 11, 563.	2.9	16
8	Column-based Technology for CD9-HPLC Immunoaffinity Isolation of Serum Extracellular Vesicles. Journal of Proteome Research, 2021, 20, 4901-4911.	3.7	20
9	Glycopeptide Biomarkers in Serum Haptoglobin for Hepatocellular Carcinoma Detection in Patients with Nonalcoholic Steatohepatitis. Journal of Proteome Research, 2020, 19, 3452-3466.	3.7	37
10	Quantitative Analysis of α-1-Antitrypsin Glycosylation Isoforms in HCC Patients Using LC-HCD-PRM-MS. Analytical Chemistry, 2020, 92, 8201-8208.	6.5	21
11	Comprehensive Detection of Single Amino Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line. Journal of Proteome Research, 2020, 19, 1635-1646.	3.7	11
12	Input of serum haptoglobin fucosylation profile in the diagnosis of hepatocellular carcinoma in patients with non-cirrhotic liver disease. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 681-691.	1.5	8
13	Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clinical Chemistry and Laboratory Medicine, 2019, 57, 407-416.	2.3	111
14	Evaluation of AGP Fucosylation as a Marker for Hepatocellular Carcinoma of Three Different Etiologies. Scientific Reports, 2019, 9, 11580.	3.3	17
15	Glycoproteomic markers of hepatocellular carcinomaâ€mass spectrometry based approaches. Mass Spectrometry Reviews, 2019, 38, 265-290.	5.4	64
16	A Method for Isolation and Proteomic Analysis of Outer Membrane Vesicles from Fecal Samples by LC-MS/MS. Journal of Proteomics and Bioinformatics, 2019, 12, 38-42.	0.4	7
17	Circulating Microvesicles from Pancreatic Cancer Accelerate the Migration and Proliferation of PANC-1 Cells. Journal of Proteome Research, 2018, 17, 1690-1699.	3.7	13
18	Differential Quantitative Determination of Site-Specific Intact N-Glycopeptides in Serum Haptoglobin between Hepatocellular Carcinoma and Cirrhosis Using LC-EThcD-MS/MS. Journal of Proteome Research, 2018, 18, 359-371.	3.7	50

Jianhui Zhu

#	Article	IF	CITATIONS
19	Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. Journal of Proteome Research, 2018, 17, 3599-3605.	3.7	136
20	Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy. Journal of Proteome Research, 2017, 16, 1763-1772.	3.7	87
21	LCâ€MS/MS isomeric profiling of permethylated Nâ€glycans derived from serum haptoglobin of hepatocellular carcinoma (HCC) and cirrhotic patients. Electrophoresis, 2017, 38, 2160-2167.	2.4	65
22	Serum <i>N</i> â€glycans outperform CA19â€9 in diagnosis of extrahepatic cholangiocarcinoma. Electrophoresis, 2017, 38, 2749-2756.	2.4	13
23	Annexin A10 is a candidate marker associated with the progression of pancreatic precursor lesions to adenocarcinoma. PLoS ONE, 2017, 12, e0175039.	2.5	20
24	Protein Markers Associated with an ALDH Sub-Population in Colorectal Cancer. Journal of Proteomics and Bioinformatics, 2016, 9, 238-247.	0.4	4
25	A procedure for the analysis of siteâ€specific and structureâ€specific fucosylation in alphaâ€1â€antitrypsin. Electrophoresis, 2016, 37, 2624-2632.	2.4	10
26	Development of an Integrated Pipeline for Profiling Microbial Proteins from Mouse Fecal Samples by LC–MS/MS. Journal of Proteome Research, 2016, 15, 3635-3642.	3.7	17
27	CD90 and CD24 Co-Expression Is Associated with Pancreatic Intraepithelial Neoplasias. PLoS ONE, 2016, 11, e0158021.	2.5	14
28	Validation of LRG1 as a Potential Biomarker for Detection of Epithelial Ovarian Cancer by a Blinded Study. PLoS ONE, 2015, 10, e0121112.	2.5	27
29	Large-Scale Identification of Core-Fucosylated Glycopeptide Sites in Pancreatic Cancer Serum Using Mass Spectrometry. Journal of Proteome Research, 2015, 14, 1968-1978.	3.7	66
30	Mass-Selected Site-Specific Core-Fucosylation of Serum Proteins in Hepatocellular Carcinoma. Journal of Proteome Research, 2015, 14, 4876-4884.	3.7	37
31	ESI–LC–MS Method for Haptoglobin Fucosylation Analysis in Hepatocellular Carcinoma and Liver Cirrhosis. Journal of Proteome Research, 2015, 14, 5388-5395.	3.7	38
32	Mass Spectrometric N-Glycan Analysis of Haptoglobin from Patient Serum Samples Using a 96-Well Plate Format. Journal of Proteome Research, 2015, 14, 4932-4939.	3.7	30
33	Tenascin-C: A Novel Candidate Marker for Cancer Stem Cells in Glioblastoma Identified by Tissue Microarrays. Journal of Proteome Research, 2015, 14, 814-822.	3.7	39
34	Overexpression of CD90 (Thy-1) in Pancreatic Adenocarcinoma Present in the Tumor Microenvironment. PLoS ONE, 2014, 9, e115507.	2.5	53
35	Heterogeneity of The CD90+ Population in Different Stages of Hepatocarcinogenesis. Journal of Proteomics and Bioinformatics, 2014, 07, 296-302.	0.4	10
36	Glycoprotein Biomarker Panel for Pancreatic Cancer Discovered by Quantitative Proteomics Analysis. Journal of Proteome Research, 2014, 13, 1873-1884.	3.7	107

Jianhui Zhu

#	Article	IF	CITATIONS
37	Mass-Selected Site-Specific Core-Fucosylation of Ceruloplasmin in Alcohol-Related Hepatocellular Carcinoma. Journal of Proteome Research, 2014, 13, 2887-2896.	3.7	48
38	Analysis of Serum Haptoglobin Fucosylation in Hepatocellular Carcinoma and Liver Cirrhosis of Different Etiologies. Journal of Proteome Research, 2014, 13, 2986-2997.	3.7	103
39	Analysis of Glycan Variation on Glycoproteins from Serum by the Reverse Lectin-Based ELISA Assay. Journal of Proteome Research, 2014, 13, 2197-2204.	3.7	41
40	Isobaric Protein-Level Labeling Strategy for Serum Glycoprotein Quantification Analysis by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2013, 85, 5353-5357.	6.5	27
41	Target Proteomic Profiling of Frozen Pancreatic CD24+ Adenocarcinoma Tissues by Immuno-Laser Capture Microdissection and Nano-LC–MS/MS. Journal of Proteome Research, 2013, 12, 2791-2804.	3.7	38
42	Immunohistochemical staining, laser capture microdissection, and filterâ€aided sample preparationâ€assisted proteomic analysis of target cell populations within tissue samples. Electrophoresis, 2013, 34, 1627-1636.	2.4	12
43	CD90 is Identified as a Candidate Marker for Cancer Stem Cells in Primary High-Grade Gliomas Using Tissue Microarrays. Molecular and Cellular Proteomics, 2012, 11, M111.010744.	3.8	122
44	ldentification of Glycoprotein Markers for Pancreatic Cancer CD24 ⁺ CD44 ⁺ Stem-like Cells Using Nano-LC–MS/MS and Tissue Microarray. Journal of Proteome Research, 2012, 11, 2272-2281.	3.7	73
45	B lymphocytes as effector cells in the immunotherapy of cancer. Journal of Surgical Oncology, 2012, 105, 431-435.	1.7	22
46	Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 288-300.	4.9	18
47	Platinum(ii) compounds bearing bone-targeting group: synthesis, crystal structure and antitumor activity. Chemical Communications, 2010, 46, 1212.	4.1	68
48	DNA Crossâ€Linking Patterns Induced by an Antitumorâ€Active Trinuclear Platinum Complex and Comparison with Its Dinuclear Analogue. Chemistry - A European Journal, 2009, 15, 5245-5253.	3.3	43
49	DNA binding property, nuclease activity and cytotoxicity of Zn(II) complexes of terpyridine derivatives. BioMetals, 2009, 22, 297-305.	4.1	69
50	Molecular combo of photodynamic therapeutic agent silicon(iv) phthalocyanine and anticancer drug cisplatin. Chemical Communications, 2009, , 908.	4.1	89
51	The role of bridging ligands in determining DNA-binding ability and cross-linking patterns of dinuclear platinum(ii) antitumour complexes. Dalton Transactions, 2009, , 10889.	3.3	17
52	Synthesis, Crystal Structure, and DNAâ€Cleaving Behavior of 5â€Substituted Benzeneâ€1,3â€bis(methylene)â€Spaced Dinuclear Copper(II) Complexes. Chemistry and Biodiversity, 2008, 5, 1495-1504.	2.1	9
53	A novel fluorescent probe for the detection of nitric oxide in vitro and in vivo. Free Radical Biology and Medicine, 2008, 45, 1426-1436.	2.9	60
54	A Trinuclear Copper(II) Complex of 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine Shows Prominent DNA Cleavage Activity. Inorganic Chemistry, 2007, 46, 3306-3312.	4.0	147

#	Article	IF	CITATIONS
55	A positively charged trinuclear 3N-chelated monofunctional platinum complex with high DNA affinity and potent cytotoxicity. Dalton Transactions, 2006, , 2617.	3.3	50
56	Oxidative DNA Cleavage Promoted by Multinuclear Copper Complexes: Activity Dependence on the Complex Structure. Chemistry - A European Journal, 2006, 12, 6621-6629.	3.3	171