
Slavena Vylkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2419107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. MBio, 2011, 2, e00055-11.	4.1	273
2	Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport. PLoS Pathogens, 2014, 10, e1003995.	4.7	157
3	Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathogens, 2017, 13, e1006149.	4.7	140
4	Human β-Defensins Kill <i>Candida albicans</i> in an Energy-Dependent and Salt-Sensitive Manner without Causing Membrane Disruption. Antimicrobial Agents and Chemotherapy, 2007, 51, 154-161.	3.2	125
5	Distinct Antifungal Mechanisms: β-Defensins Require Candida albicans Ssa1 Protein, while Trk1p Mediates Activity of Cysteine-Free Cationic Peptides. Antimicrobial Agents and Chemotherapy, 2006, 50, 324-331.	3.2	88
6	Histatin 5 Initiates Osmotic Stress Response in <i>Candida albicans</i> via Activation of the Hog1 Mitogen-Activated Protein Kinase Pathway. Eukaryotic Cell, 2007, 6, 1876-1888.	3.4	81
7	The TRK1 Potassium Transporter Is the Critical Effector for Killing of Candida albicans by the Cationic Protein, Histatin 5. Journal of Biological Chemistry, 2004, 279, 55060-55072.	3.4	69
8	Role of Acetyl Coenzyme A Synthesis and Breakdown in Alternative Carbon Source Utilization in <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 1733-1741.	3.4	65
9	Phagosomal Neutralization by the Fungal Pathogen Candida albicans Induces Macrophage Pyroptosis. Infection and Immunity, 2017, 85, .	2.2	64
10	Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids. MBio, 2016, 7, .	4.1	55
11	The role of released ATP in killing Candida albicans and other extracellular microbial pathogens by cationic peptides. Purinergic Signalling, 2007, 3, 91-7.	2.2	41
12	Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. Current Clinical Microbiology Reports, 2019, 6, 108-119.	3.4	36
13	Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1. Infection and Immunity, 2003, 71, 3251-3260.	2.2	33
14	Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. MBio, 2020, 11, .	4.1	24
15	Metabolic modeling predicts specific gut bacteria as key determinants for <i>Candida albicans</i> colonization levels. ISME Journal, 2021, 15, 1257-1270.	9.8	23
16	Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on <i>Candida albicans</i> . FEMS Yeast Research, 2009, 9, 278-292.	2.3	21
17	Catch the wave: Metabolomic analyses in human pathogenic fungi. PLoS Pathogens, 2020, 16, e1008757.	4.7	15
18	Clinical <i>Candida albicans</i> Vaginal Isolates and a Laboratory Strain Show Divergent Behaviors during Macrophage Interactions. MSphere, 2020, 5, .	2.9	15

SLAVENA VYLKOVA

#	Article	IF	CITATIONS
19	Active neutrophil responses counteract CandidaÂalbicans burn wound infection of ex vivo human skin explants. Scientific Reports, 2020, 10, 21818.	3.3	13
20	The Transcription Factor Stp2 Is Important for Candida albicans Biofilm Establishment and Sustainability. Frontiers in Microbiology, 2020, 11, 794.	3.5	11
21	<i>CNP2</i> Encodes a High-Specificity Proline Permease in Candida albicans. MBio, 2022, 13, e0314221.	4.1	7
22	Bloodstream infection due to Enterobacter ludwigii, correlating with massive aggregation on the surface of a central venous catheter. Infection, 2020, 48, 955-958.	4.7	3
23	Encounters with Mammalian Cells: Survival Strategies of Candida Species. , 0, , 261-P1.		1