Michele Tinti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2418875/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Visualisation of experimentally determined and predicted protein N-glycosylation and predicted glycosylphosphatidylinositol anchor addition in Trypanosoma brucei Wellcome Open Research, 2022, 7, 33.	1.8	1
2	Visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei. Wellcome Open Research, 2022, 7, 34.	1.8	18
3	Control of Variant Surface Glycoprotein Expression by CFB2 in Trypanosoma brucei and Quantitative Proteomic Connections to Translation and Cytokinesis. MSphere, 2022, 7, e0006922.	2.9	4
4	Oligo targeting for profiling drug resistance mutations in the parasitic trypanosomatids. Nucleic Acids Research, 2022, 50, e79-e79.	14.5	5
5	Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Research, 2021, 6, 36.	1.8	2
6	Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2021, 15, e0009132.	3.0	9
7	Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. PLoS ONE, 2021, 16, e0244699.	2.5	4
8	Novel aspects of iron homeostasis in pathogenic bloodstream form Trypanosoma brucei. PLoS Pathogens, 2021, 17, e1009696.	4.7	7
9	Identifying the beta-site amyloid precursor protein cleaving enzyme 1 interactome through the proximity-dependent biotin identification assay. Neuroscience Letters, 2021, , 136302.	2.1	1
10	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
11	Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. Wellcome Open Research, 2019, 4, 152.	1.8	27
12	Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei. Molecular and Cellular Proteomics, 2018, 17, 1184-1195.	3.8	36
13	The mRNA cap methyltransferase gene TbCMT1 is not essential in vitro but is a virulence factor in vivo for bloodstream form Trypanosoma brucei. PLoS ONE, 2018, 13, e0201263.	2.5	2
14	Development of Chemical Proteomics for the Folateome and Analysis of the Kinetoplastid Folateome. ACS Infectious Diseases, 2018, 4, 1475-1486.	3.8	1
15	Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. Journal of Biological Chemistry, 2017, 292, 4942-4952.	3.4	8
16	Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities. Journal of Biological Chemistry, 2017, 292, 20328-20341.	3.4	14
17	Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Molecular and Cellular Proteomics, 2017, 16, 2254-2267.	3.8	24
18	Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular and Cellular Proteomics, 2016, 15, 2476-2490.	3.8	61

MICHELE TINTI

#	Article	IF	CITATIONS
19	Identification of Caveolar Resident Proteins in Ventricular Myocytes Using a Quantitative Proteomic Approach: Dynamic Changes in Caveolar Composition Following Adrenoceptor Activation. Molecular and Cellular Proteomics, 2015, 14, 596-608.	3.8	25
20	ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome. Database: the Journal of Biological Databases and Curation, 2014, 2014, bat085.	3.0	51
21	Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers. Open Biology, 2014, 4, 140029.	3.6	17
22	Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates. Open Biology, 2012, 2, 120103.	3.6	47
23	The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends in Endocrinology and Metabolism, 2011, 22, 429-436.	7.1	58
24	Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence. Journal of Biological Chemistry, 2011, 286, 4173-4185.	3.4	41
25	Tumor Suppressor Density-enhanced Phosphatase-1 (DEP-1) Inhibits the RAS Pathway by Direct Dephosphorylation of ERK1/2 Kinases. Journal of Biological Chemistry, 2009, 284, 22048-22058.	3.4	68
26	Linear Motif Atlas for Phosphorylation-Dependent Signaling. Science Signaling, 2008, 1, ra2.	3.6	418
27	Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes. Human Molecular Genetics, 2008, 17, 2018-2029.	2.9	79
28	Analysis of the SAG5 locus reveals a distinct genomic organisation in virulent and avirulent strains of Toxoplasma gondii. International Journal for Parasitology, 2003, 33, 1605-1616.	3.1	12
29	The SAG5 locus of Toxoplasma gondii encodes three novel proteins belonging to the SAG1 family of surface antigens. International Journal for Parasitology, 2002, 32, 121-131.	3.1	14