Julia McBrien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241832/publications.pdf

Version: 2024-02-01

236925 197818 5,959 50 25 49 h-index citations g-index papers 52 52 52 7749 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Medicine, 2006, 12, 1365-1371.	30.7	3,107
2	Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature, 2014, 511, 601-605.	27.8	422
3	Immune activation and AIDS pathogenesis. Aids, 2008, 22, 439-446.	2.2	209
4	CD8 + Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy. Immunity, 2016, 45, 656-668.	14.3	178
5	Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell, 2021, 184, 460-475.e21.	28.9	156
6	CD8+ Lymphocytes Control Viral Replication in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively Infected Cells. PLoS Pathogens, 2010, 6, e1000747.	4.7	146
7	Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature, 2020, 578, 154-159.	27.8	141
8	CTLA-4+PD-1â ⁻ Memory CD4+ T Cells Critically Contribute to Viral Persistence in Antiretroviral Therapy-Suppressed, SIV-Infected Rhesus Macaques. Immunity, 2017, 47, 776-788.e5.	14.3	139
9	The AIDS resistance of naturally SIV-infected sooty mangabeys is independent of cellular immunity to the virus. Blood, 2006, 108, 209-217.	1.4	120
10	Nonhuman primate models in AIDS research. Current Opinion in HIV and AIDS, 2013, 8, 1.	3.8	118
11	CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells. PLoS Pathogens, 2014, 10, e1004467.	4.7	109
12	Activated CD4 ⁺ CCR5 ⁺ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 518-523.	7.1	88
13	Decreased T Follicular Regulatory Cell/T Follicular Helper Cell (TFH) in Simian Immunodeficiency Virus–Infected Rhesus Macaques May Contribute to Accumulation of TFH in Chronic Infection. Journal of Immunology, 2015, 195, 3237-3247.	0.8	81
14	Mechanisms of CD8 ⁺ TÂcellâ€mediated suppression of HIV/SIV replication. European Journal of Immunology, 2018, 48, 898-914.	2.9	79
15	CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nature Medicine, 2020, 26, 519-528.	30.7	70
16	Depletion of CD8+Cells in Sooty Mangabey Monkeys Naturally Infected with Simian Immunodeficiency Virus Reveals Limited Role for Immune Control of Virus Replication in a Natural Host Species. Journal of Immunology, 2007, 178, 8002-8012.	0.8	68
17	Persistence of Virus Reservoirs in ART-Treated SHIV-Infected Rhesus Macaques after Autologous Hematopoietic Stem Cell Transplant. PLoS Pathogens, 2014, 10, e1004406.	4.7	61
18	Differential Impact of <i>In Vivo</i> CD8 ⁺ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2015, 89, 8677-8686.	3.4	58

#	Article	IF	CITATIONS
19	Rapid Germinal Center and Antibody Responses in Non-human Primates after a Single Nanoparticle Vaccine Immunization. Cell Reports, 2019, 29, 1756-1766.e8.	6.4	47
20	Animal models to achieve an HIV cure. Current Opinion in HIV and AIDS, 2016, 11, 432-441.	3.8	45
21	Combination of CD8 \hat{I}^2 Depletion and Interleukin-15 Superagonist N-803 Induces Virus Reactivation in Simian-Human Immunodeficiency Virus-Infected, Long-Term ART-Treated Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	40
22	Alterations of redox and iron metabolism accompany the development of <scp>HIV</scp> latency. EMBO Journal, 2020, 39, e102209.	7.8	37
23	Viral CTL Escape Mutants Are Generated in Lymph Nodes and Subsequently Become Fixed in Plasma and Rectal Mucosa during Acute SIV Infection of Macaques. PLoS Pathogens, 2011, 7, e1002048.	4.7	35
24	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
25	Intact Type I Interferon Production and IRF7 Function in Sooty Mangabeys. PLoS Pathogens, 2013, 9, e1003597.	4.7	30
26	Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathogens, 2020, 16, e1008821.	4.7	26
27	Reconstitution of Intestinal CD4 and Th17 T Cells in Antiretroviral Therapy Suppressed HIV-Infected Subjects: Implication for Residual Immune Activation from the Results of a Clinical Trial. PLoS ONE, 2014, 9, e109791.	2.5	26
28	Lower nasopharyngeal viral load during the latest phase of COVID-19 pandemic in a Northern Italy University Hospital. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1573-1577.	2.3	26
29	Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathogens, 2016, 12, e1006135.	4.7	24
30	CD4 ⁺ T Cells and HIV: A Paradoxical Pas de Deux. Science Translational Medicine, 2012, 4, 123ps4.	12.4	23
31	IL-21 and IFNα therapy rescues terminallyÂdifferentiated NK cells and limits SIV reservoir in ART-treated macaques. Nature Communications, 2021, 12, 2866.	12.8	23
32	Initiation of Antiretroviral Therapy Restores CD4 ⁺ T Memory Stem Cell Homeostasis in Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2016, 90, 6699-6708.	3.4	21
33	Fingolimod retains cytolytic T cells and limits T follicular helper cell infection in lymphoid sites of SIV persistence. PLoS Pathogens, 2019, 15, e1008081.	4.7	21
34	Short-Term Pegylated Interferon $\hat{l}\pm 2a$ Treatment Does Not Significantly Reduce the Viral Reservoir of Simian Immunodeficiency Virus-Infected, Antiretroviral Therapy-Treated Rhesus Macaques. Journal of Virology, 2018, 92, .	3.4	19
35	From structure to sequence: Antibody discovery using cryoEM. Science Advances, 2022, 8, eabk2039.	10.3	18
36	Reduced Simian Immunodeficiency Virus Replication in Macrophages of Sooty Mangabeys Is Associated with Increased Expression of Host Restriction Factors. Journal of Virology, 2015, 89, 10136-10144.	3.4	14

#	Article	IF	CITATIONS
37	Antiretroviral Therapy in Simian Immunodeficiency Virus-Infected Sooty Mangabeys: Implications for AIDS Pathogenesis. Journal of Virology, 2016, 90, 7541-7551.	3.4	13
38	Virologic and Immunologic Features of Simian Immunodeficiency Virus Control Post-ART Interruption in Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	13
39	Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses. PLoS Pathogens, 2018, 14, e1007003.	4.7	12
40	Bone Marrow-Derived CD4 ⁺ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. Journal of Virology, 2019, 93, .	3.4	10
41	HIV and Tfh Cells: Circulating New Ideas to Identify and Protect. Immunity, 2016, 44, 16-18.	14.3	9
42	What pediatric nonprogressors and natural SIV hosts teach us about HIV. Science Translational Medicine, 2016, 8, 358fs16.	12.4	7
43	Embracing the complexity of <scp>HIV</scp> immunology. Immunological Reviews, 2013, 254, 5-9.	6.0	6
44	CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice. Molecular Therapy - Oncolytics, 2016, 3, 15024.	4.4	6
45	Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathogens, 2021, 17, e1009674.	4.7	6
46	Intragastric Administration of Lactobacillus plantarum and 2,2′-Dithiodipyridine-Inactivated Simian Immunodeficiency Virus (SIV) Does Not Protect Indian Rhesus Macaques from Intrarectal SIV Challenge or Reduce Virus Replication after Transmission. Journal of Virology, 2018, 92, .	3.4	4
47	Longing for HIV protection. Nature Microbiology, 2018, 3, 648-649.	13.3	2
48	Analysis of the In Vivo Turnover of CD4+ T-Cell Subsets in Chronically SIV-Infected Sooty Mangabeys. PLoS ONE, 2016, 11, e0156352.	2.5	2
49	Editorial overview: Host pathogens: New paradigms and tools to decipher and deconstruct the host–pathogen interaction. Current Opinion in Immunology, 2015, 36, v-viii.	5. 5	0
50	Introduction to the Special Issue: Immunology of HIV and SIV infection. Seminars in Immunology, 2021, 51, 101484.	5.6	0