List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2416915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. Journal of Controlled Release, 2022, 342, 157-169.	9.9	26
2	Aminoacyl chain translocation catalysed by a type II thioesterase domain in an unusual non-ribosomal peptide synthetase. Nature Communications, 2022, 13, 62.	12.8	11
3	A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. Journal of Medicinal Chemistry, 2022, 65, 2225-2237.	6.4	33
4	Characterization of a class II ketol-acid reductoisomerase from <i>Mycobacterium tuberculosis</i> . RSC Advances, 2022, 12, 10540-10544.	3.6	1
5	Discovery and Biosynthetic Investigation of a New Antibacterial Dehydrated Nonâ€Ribosomal Tripeptide. Angewandte Chemie, 2021, 133, 3266-3274.	2.0	5

 $_{6}$ Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{30}^{50}$ 542 Td

7	Discovery and Biosynthetic Investigation of a New Antibacterial Dehydrated Nonâ€Ribosomal Tripeptide. Angewandte Chemie - International Edition, 2021, 60, 3229-3237.	13.8	25
8	Genomic scanning enabling discovery of a new antibacterial bicyclic carbamate-containing alkaloid. Synthetic and Systems Biotechnology, 2021, 6, 12-19.	3.7	5
9	Peculiarities of promiscuous l-threonine transaldolases for enantioselective synthesis of β-hydroxy-α-amino acids. Applied Microbiology and Biotechnology, 2021, 105, 3507-3520.	3.6	9
10	The chemical profile of activated secondary metabolites by overexpressing LaeA in Aspergillus niger. Microbiological Research, 2021, 248, 126735.	5.3	4
11	Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nature Communications, 2020, 11, 6183.	12.8	176
12	Defluorination of 4-fluorothreonine by threonine deaminase. Organic and Biomolecular Chemistry, 2020, 18, 6236-6240.	2.8	8
13	Identification of 5-Fluoro-5-Deoxy-Ribulose as a Shunt Fluorometabolite in Streptomyces sp. MA37. Biomolecules, 2020, 10, 1023.	4.0	7
14	Discovery of New Antibacterial Accramycins from a Genetic Variant of the Soil Bacterium, Streptomyces sp. MA37. Biomolecules, 2020, 10, 1464.	4.0	9
15	An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions. Applied Microbiology and Biotechnology, 2020, 104, 3885-3896.	3.6	18
16	The X-factor: Enhanced β-oxidation on intracellular triacylglycerols enabling overproduction of polyketide drug-like molecules in microorganisms. Synthetic and Systems Biotechnology, 2020, 5, 19-20.	3.7	3
17	Characterization of the promiscuous <i>N</i> -acyl CoA transferase, LgoC, in legonoxamine biosynthesis. Organic and Biomolecular Chemistry, 2020, 18, 2219-2222.	2.8	11
18	Targeted Isolation of Indole Alkaloids from Streptomyces sp. CT37. Molecules, 2020, 25, 1108.	3.8	10

2

#	Article	IF	CITATIONS
19	Novel South African Rare Actinomycete Kribbella speibonae Strain SK5: A Prolific Producer of Hydroxamate Siderophores Including New Dehydroxylated Congeners. Molecules, 2020, 25, 2979.	3.8	11
20	Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chemical Science, 2020, 11, 2621-2626.	7.4	138
21	Fluorine biocatalysis. Current Opinion in Chemical Biology, 2020, 55, 119-126.	6.1	36
22	A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules, 2020, 25, 256.	3.8	31
23	Signalling and Bioactive Metabolites from Streptomyces sp. RK44. Molecules, 2020, 25, 460.	3.8	15
24	α-d-Glucopyranosyl-(1→2)-[6-O-(l-tryptophanyl)-β-d-fructofuranoside]. MolBank, 2019, 2019, M1066.	0.5	2
25	Mn-Loaded apolactoferrin dots for <i>in vivo</i> MRI and NIR-II cancer imaging. Journal of Materials Chemistry C, 2019, 7, 9448-9454.	5.5	28
26	Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. Journal of Organic Chemistry, 2019, 84, 16323-16328.	3.2	12
27	Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules, 2019, 24, 3384.	3.8	31
28	<i>In vitro</i> reconstitution of the biosynthetic pathway of 3-hydroxypicolinic acid. Organic and Biomolecular Chemistry, 2019, 17, 454-460.	2.8	3
29	A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection. Chemical Communications, 2019, 55, 2541-2544.	4.1	32
30	Investigation of Penicillin Binding Protein (PBP)-like Peptide Cyclase and Hydrolase in Surugamide Non-ribosomal Peptide Biosynthesis. Cell Chemical Biology, 2019, 26, 737-744.e4.	5.2	25
31	Novel electrochemical nanoswitch biosensor based on self-assembled pH-sensitive continuous circular DNA. Biosensors and Bioelectronics, 2019, 131, 274-279.	10.1	12
32	LC-HRMS-Database Screening Metrics for Rapid Prioritization of Samples to Accelerate the Discovery of Structurally New Natural Products. Journal of Natural Products, 2019, 82, 211-220.	3.0	22
33	Paenidigyamycin G: 1-Acetyl-2,4-dimethyl-3-phenethyl-1H-imidazol-3-ium. MolBank, 2019, 2019, M1094.	0.5	4
34	Digyaindoleacid A: 2-(1-(4-Hydroxyphenyl)-3-oxobut-1-en-2-yloxy)-3-(1H-indol-3-yl)propanoic Acid, a Novel Indole Alkaloid. MolBank, 2019, 2019, M1080.	0.5	4
35	Legonoxamines A-B, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Letters, 2019, 60, 75-79.	1.4	22
36	Paenidigyamycin A, Potent Antiparasitic Imidazole Alkaloid from the Ghanaian Paenibacillus sp. DE2SH. Marine Drugs, 2019, 17, 9.	4.6	27

#	Article	IF	CITATIONS
37	Profiling of secondary metabolite gene clusters regulated by LaeA in Aspergillus niger FGSC A1279 based on genome sequencing and transcriptome analysis. Research in Microbiology, 2018, 169, 67-77.	2.1	40
38	Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites. Microbiological Research, 2018, 217, 101-107.	5.3	17
39	Directed Accumulation of Anticancer Depsipeptides by Characterization of Neoantimycins Biosynthetic Pathway and an NADPH-Dependent Reductase. ACS Chemical Biology, 2018, 13, 2153-2160.	3.4	23
40	Targeted Dereplication of Microbial Natural Products by High-Resolution MS and Predicted LC Retention Time. Journal of Natural Products, 2017, 80, 1370-1377.	3.0	27
41	(±)â€Hippolide J – A Pair of Unusual Antifungal Enantiomeric Sesterterpenoids from the Marine Sponge <i>Hippospongia lachne</i> . European Journal of Organic Chemistry, 2017, 2017, 3421-3426.	2.4	24
42	Dissection of the neocarazostatin: a C ₄ alkyl side chain biosynthesis by in vitro reconstitution. Organic and Biomolecular Chemistry, 2017, 15, 3843-3848.	2.8	19
43	Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron, 2017, 73, 2633-2637.	1.9	15
44	Biological fluorination from the sea: discovery of a SAM-dependent nucleophilic fluorinating enzyme from the marine-derived bacterium Streptomyces xinghaiensis NRRL B24674. RSC Advances, 2016, 6, 27047-27051.	3.6	35
45	A ThDP-dependent enzymatic carboligation reaction involved in Neocarazostatin A tricyclic carbazole formation. Organic and Biomolecular Chemistry, 2016, 14, 8679-8684.	2.8	17
46	Rücktitelbild: Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins (Angew. Chem. 43/2015). Angewandte Chemie, 2015, 127, 13016-13016.	2.0	0
47	Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angewandte Chemie - International Edition, 2015, 54, 12697-12701.	13.8	46
48	Editorial (Thematic Issue: Discovery and Biosynthesis of Natural Products with Anti-Cancer) Tj ETQq0 0 0 rgBT /C)verlock 1(1.7	0 Tf 50 302 To
49	Biosynthesis of Neocarazostatin A Reveals the Sequential Carbazole Prenylation and Hydroxylation in the Tailoring Steps. Chemistry and Biology, 2015, 22, 1633-1642.	6.0	39
50	Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate. Organic and Biomolecular Chemistry, 2015, 13, 9585-9592.	2.8	39
51	Chaxapeptin, a Lasso Peptide from Extremotolerant <i>Streptomyces leeuwenhoekii</i> Strain C58 from the Hyperarid Atacama Desert. Journal of Organic Chemistry, 2015, 80, 10252-10260.	3.2	83
52	Draft Genome Sequence of Streptomyces sp. Strain CT34, Isolated from a Ghanaian Soil Sample. Genome Announcements, 2015, 3, .	0.8	5
53	Identification of a fluorometabolite from Streptomyces sp. MA37: (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. Chemical Science, 2015, 6, 1414-1419.	7.4	47
54	Enzymatic Fluorination and Biotechnological Developments of the Fluorinase. Chemical Reviews, 2015,	47.7	261

^{115, 634-649.}

#	Article	IF	CITATIONS
55	Identification and Characterization of the Biosynthetic Gene Cluster of Thiolutin, a Tumor Angiogenesis Inhibitor, in Saccharothrix algeriensis NRRL B-24137. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 277-284.	1.7	17
56	Butremycin, the 3-Hydroxyl Derivative of Ikarugamycin and a Protonated Aromatic Tautomer of 5′-Methylthioinosine from a Ghanaian Micromonospora sp. K310. Marine Drugs, 2014, 12, 999-1012.	4.6	42
57	Butrepyrazinone, a New Pyrazinone with an Unusual Methylation Pattern from a Ghanaian Verrucosispora sp. K51G. Marine Drugs, 2014, 12, 5197-5208.	4.6	24
58	Action in pairs. Virulence, 2014, 5, 585-586.	4.4	1
59	Fluoroacetate biosynthesis from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674. Organic and Biomolecular Chemistry, 2014, 12, 4828-4831.	2.8	44
60	Disruption of a methyltransferase gene in actinomycin G gene cluster in <i>Streptomyces iakyrus</i> increases the production of phenazinomycin. FEMS Microbiology Letters, 2014, 352, 62-68.	1.8	10
61	Identification of Fluorinases from <i>Streptomyces</i> sp MA37, <i>Norcardia brasiliensis</i> , and <i>Actinoplanes</i> sp N902â€109 by Genome Mining. ChemBioChem, 2014, 15, 364-368.	2.6	97
62	Identification and characterization of the actinomycin G gene cluster in Streptomyces iakyrus. Molecular BioSystems, 2013, 9, 1286.	2.9	14
63	Mining complex bacteria media for all fluorinated compounds made possible by using HPLC coupled parallel to fluorine-specific and molecular specific detection. Journal of Analytical Atomic Spectrometry, 2013, 28, 877.	3.0	10
64	Tianchimycins A–B, 16-membered macrolides from the rare actinomycete Saccharothrix xinjiangensis. Tetrahedron, 2013, 69, 6060-6064.	1.9	19
65	The Fish Pathogen Yersinia ruckeri Produces Holomycin and Uses an RNA Methyltransferase for Self-resistance. Journal of Biological Chemistry, 2013, 288, 14688-14697.	3.4	32
66	Dithiolopyrrolone Natural Products: Isolation, Synthesis and Biosynthesis. Marine Drugs, 2013, 11, 3970-3997.	4.6	48
67	Fluorine Speciation Analysis Using Reverse Phase Liquid Chromatography Coupled Off-Line to Continuum Source Molecular Absorption Spectrometry (CS-MAS): Identification and Quantification of Novel Fluorinated Organic Compounds in Environmental and Biological Samples. Analytical Chemistry 2012, 84, 6213, 6219	6.5	49
68	Chaxamycins A–D, Bioactive Ansamycins from a Hyper-arid Desert <i>Streptomyces</i> sp Journal of Natural Products, 2011, 74, 1491-1499.	3.0	116
69	Diverse Metabolic Profiles of a <i>Streptomyces</i> Strain Isolated from a Hyper-arid Environment. Journal of Natural Products, 2011, 74, 1965-1971.	3.0	129
70	ldentification and heterologous expression of the biosynthetic gene cluster for holomycin produced by Streptomyces clavuligerus. Process Biochemistry, 2011, 46, 811-816.	3.7	28
71	An enzymatic route to 5-deoxy-5-[18F]fluoro-d-ribose, a [¹⁸ F]-fluorinated sugar for PET imaging. Chemical Communications, 2010, 46, 139-141.	4.1	49
72	Mechanistic Insights into Water Activation in SAM Hydroxide Adenosyltransferase (dufâ€62). ChemBioChem, 2009, 10, 2455-2459.	2.6	16

#	Article	IF	CITATIONS
73	<i>S</i> â€Adenosylâ€ <scp>L</scp> â€methionine:Hydroxide Adenosyltransferase: A SAM Enzyme. Angewandte Chemie - International Edition, 2008, 47, 5357-5361.	13.8	26
74	The fluorinase, the chlorinase and the duf-62 enzymes. Current Opinion in Chemical Biology, 2008, 12, 582-592.	6.1	69
75	In Vitro Reconstituted Biotransformation of 4-Fluorothreonine from Fluoride Ion: Application of the Fluorinase. Chemistry and Biology, 2008, 15, 1268-1276.	6.0	43
76	Biological Fluorination in Streptomyces cattleya. , 2008, , 761-777.		0
77	The identification of (3R,4S)-5-fluoro-5-deoxy-d-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya. Bioorganic Chemistry, 2007, 35, 375-385.	4.1	23
78	Fluorinase mediated C–18F bond formation, an enzymatic tool for PET labelling. Chemical Communications, 2006, , 652.	4.1	78
79	Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2′-deoxyadenosine substrates. Organic and Biomolecular Chemistry, 2006, 4, 1458.	2.8	35
80	The Fluorinase fromStreptomyces cattleya Is Also a Chlorinase. Angewandte Chemie - International Edition, 2006, 45, 759-762.	13.8	98
81	The identification of 5′-fluoro-5-deoxyinosine as a shunt product in cell free extracts of Streptomyces cattleya. Bioorganic Chemistry, 2005, 33, 393-401.	4.1	12
82	Fluorometabolite Biosynthesis and the Fluorinase from Streptomyces cattleya. ChemInform, 2005, 36, no.	0.0	1
83	Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature, 2004, 427, 561-565.	27.8	306
84	Enzymatic Fluorination in Streptomyces cattleya Takes Place with an Inversion of Configuration Consistent with an SN2 Reaction Mechanism. ChemBioChem, 2004, 5, 685-690.	2.6	63
85	Identification of 5-fluoro-5-deoxy-d-ribose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya. Chemical Communications, 2004, , 592.	4.1	31
86	Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya. Natural Product Reports, 2004, 21, 773.	10.3	89
87	The first enzymatic method for C-18F bond formation: the synthesis of 5?-[18F]-fluoro-5?-deoxyadenosine for imaging with PET. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 1181-1189.	1.0	54
88	Isolation and characterisation of 5â€2-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. FEBS Letters, 2003, 547, 111-114.	2.8	71