Alicia Llorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415922/publications.pdf

Version: 2024-02-01

46 papers 19,285 citations

33 h-index 243625 44 g-index

46 all docs

46 docs citations

times ranked

46

23307 citing authors

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
3	Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 2018, 75, 193-208.	5.4	1,689
4	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
5	Lipids in exosomes: Current knowledge and the way forward. Progress in Lipid Research, 2017, 66, 30-41.	11.6	751
6	Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1302-1309.	2.4	546
7	Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, 2019, 60, 9-18.	4.2	418
8	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
9	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	12.2	314
10	An emerging focus on lipids in extracellular vesicles. Advanced Drug Delivery Reviews, 2020, 159, 308-321.	13.7	289
11	Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. European Journal of Cancer, 2017, 70, 122-132.	2.8	254
12	Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. Journal of Extracellular Vesicles, 2017, 6, 1344087.	12.2	222
13	Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer, 2017, 17, 730.	2.6	199
14	Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Molecular Cancer, 2017, 16, 156.	19.2	188
15	PIKfyve inhibition increases exosome release and induces secretory autophagy. Cellular and Molecular Life Sciences, 2016, 73, 4717-4737.	5.4	187
16	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182
17	Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 2015, 6, 30357-30376.	1.8	179
18	Regulation of exosome release by glycosphingolipids and flotillins. FEBS Journal, 2014, 281, 2214-2227.	4.7	157

#	Article	IF	CITATIONS
19	Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1154-1163.	1.9	136
20	Exosomal miRNAs as Biomarkers for Prostate Cancer. Frontiers in Genetics, 2013, 4, 36.	2.3	125
21	Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. Journal of Cell Science, 2004, 117, 5343-5351.	2.0	109
22	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	3.4	102
23	Proteomic Analysis of Microvesicles Released by the Human Prostate Cancer Cell Line PC-3. Molecular and Cellular Proteomics, 2012, 11, M111.012914-1-M111.012914-11.	3.8	81
24	Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Molecular Cancer, 2016, 15, 41.	19.2	76
25	Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 281-288.	2.6	76
26	Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. European Journal of Pharmaceutical Sciences, 2017, 98, 80-85.	4.0	73
27	Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. Journal of Extracellular Vesicles, 2020, 9, 1816641.	12.2	70
28	Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Communication and Signaling, 2018, 16, 17.	6.5	68
29	Cholesterol regulates prostasome release from secretory lysosomes in PC-3 human prostate cancer cells. European Journal of Cell Biology, 2007, 86, 405-415.	3.6	62
30	Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. Journal of Extracellular Vesicles, 2018, 7, 1473707.	12.2	60
31	Analytical techniques for multiplex analysis of protein biomarkers. Expert Review of Proteomics, 2020, 17, 257-273.	3.0	60
32	Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. British Journal of Cancer, 2022, 126, 331-350.	6.4	39
33	Adult Stem Cell-Derived Extracellular Vesicles in Cancer Treatment: Opportunities and Challenges. Cells, 2020, 9, 1171.	4.1	33
34	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	13.7	33
35	Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. Journal of Materials Chemistry B, 2020, 8, 6710-6738.	5.8	32
36	A novel 3D heterotypic spheroid model for studying extracellular vesicle-mediated tumour and immune cell communication. Biochemical and Biophysical Research Communications, 2018, 495, 1930-1935.	2.1	20

3

#	Article	IF	CITATIONS
37	Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. Data in Brief, 2016, 7, 1171-1174.	1.0	15
38	Potential of miRNAs in urinary extracellular vesicles for management of active surveillance in prostate cancer patients. British Journal of Cancer, 2022, 126, 492-501.	6.4	14
39	Amniotic fluid stem cellâ€derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THPâ€1 cells. FASEB Journal, 2022, 36, e22218.	0.5	11
40	Extracellular Vesicles and Renal Fibrosis: An Odyssey toward a New Therapeutic Approach. International Journal of Molecular Sciences, 2021, 22, 3887.	4.1	7
41	Extracellular Vesicles as Novel Players in Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 467-471.	6.1	6
42	Ebulin I Is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins, 2021, 13, 102.	3.4	3
43	Uptake of circulating extracellular vesicles from rectal cancer patients and differential responses by human monocyte cultures. FEBS Open Bio, 2021, 11, 724-740.	2.3	2
44	Mass spectrometry for the identification of protein biomarkers in urinary extracellular vesicles. , 2020, , 437-440.		1
45	Implication of \hat{I}^2 2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells. PLoS ONE, 2021, 16, e0253828.	2.5	1
46	Urinary Extracellular Vesicles in Urology: Current Successes and Challenges Ahead. European Urology, 2021, 81, 127-127.	1.9	0