Juan I Paredes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415854/publications.pdf

Version: 2024-02-01

126858 62565 7,901 81 33 80 citations h-index g-index papers 81 81 81 11804 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption. Journal of Colloid and Interface Science, 2022, 605, 513-527.	5.0	11
2	Driving the sodium-oxygen battery chemistry towards the efficient formation of discharge products: The importance of sodium superoxide quantification. Journal of Energy Chemistry, 2022, 68, 709-720.	7.1	10
3	Nickel nanoparticle/carbon catalysts derived from a novel aqueous-synthesized metal-organic framework for nitroarene reduction. Journal of Alloys and Compounds, 2021, 853, 157348.	2.8	33
4	Boosting the Performance of Graphene Cathodes in Na–O ₂ Batteries by Exploiting the Multifunctional Character of Small Biomolecules. Small, 2021, 17, e2005034.	5.2	10
5	Influence of graphene oxide's characteristics on the fabrication and performance of crosslinked nanofiltration membranes. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 158-165.	2.7	4
6	CO2 capture by novel hierarchical activated ordered micro-mesoporous carbons derived from low value coal tar products. Microporous and Mesoporous Materials, 2021, 318, 110986.	2.2	19
7	Cytotoxicity of Nucleotide-Stabilized Graphene Dispersions on Osteosarcoma and Healthy Cells: On the Way to Safe Theranostics Agents. ACS Applied Bio Materials, 2021, 4, 4384-4393.	2.3	1
8	Molecular Functionalization of 2H-Phase MoS ₂ Nanosheets via an Electrolytic Route for Enhanced Catalytic Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33157-33171.	4.0	11
9	Heteropolyacids supported on boron nitride and carbon nitride for catalytic and catalytic photo-assisted alcohol dehydration. Catalysis Today, 2021, 380, 209-222.	2.2	5
10	A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54860-54873.	4.0	9
11	High Performance Na-O ₂ Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 494-506.	4.0	32
12	Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110709.	2.5	30
13	Understanding the effect of the mesopore volume of ordered mesoporous carbons on their electrochemical behavior as Li-ion battery anodes. Microporous and Mesoporous Materials, 2020, 306, 110417.	2.2	7
14	Activation of two-dimensional MoS2 nanosheets by wet-chemical sulfur vacancy engineering for the catalytic reduction of nitroarenes and organic dyes. Applied Materials Today, 2020, 20, 100678.	2.3	15
15	Oxidized graphitic carbon nitride nanosheets as an effective adsorbent for organic dyes and tetracycline for water remediation. Journal of Alloys and Compounds, 2019, 809, 151783.	2.8	60
16	Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Processing Technology, 2019, 196, 106152.	3.7	27
17	Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS ₂ Nanosheets for Energy Storage and Catalytic Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 36991-37003.	4.0	43
18	An aqueous cathodic delamination route towards high quality graphene flakes for oil sorption and electrochemical charge storage applications. Chemical Engineering Journal, 2019, 372, 1226-1239.	6.6	14

#	Article	IF	CITATIONS
19	MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response. Materials Science and Engineering C, 2019, 100, 11-22.	3.8	4
20	A direct route to activated two-dimensional cobalt oxide nanosheets for electrochemical energy storage, catalytic and environmental applications. Journal of Colloid and Interface Science, 2019, 539, 263-276.	5.0	4
21	High quality, low-oxidized graphene via anodic exfoliation with table salt as an efficient oxidation-preventing co-electrolyte for water/oil remediation and capacitive energy storage applications. Applied Materials Today, 2018, 11, 246-254.	2.3	28
22	A biosupramolecular approach to graphene: Complementary nucleotide-nucleobase combinations as enhanced stabilizers towards aqueous-phase exfoliation and functional graphene-nucleotide hydrogels. Carbon, 2018, 129, 321-334.	5.4	5
23	Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Materials Science and Engineering C, 2017, 79, 315-325.	3.8	71
24	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24085-24099.	4.0	92
25	Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods. Journal of Materials Chemistry A, 2017, 5, 7228-7242.	5.2	69
26	Electrochemical Synthesis and Characterization of Flavin Mononucleotideâ€Exfoliated Pristine Graphene/Polypyrrole Composites. ChemElectroChem, 2017, 4, 1487-1497.	1.7	11
27	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied Materials & Interfaces, 2017, 9, 2835-2845.	4.0	33
28	A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials & amp; Interfaces, 2017, 9, 44740-44755.	4.0	46
29	Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 27974-27986.	4.0	73
30	Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale, 2016, 8, 15389-15413.	2.8	122
31	Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Nanoscale, 2016, 8, 2982-2998.	2.8	84
32	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Distriction (2015), 7, 10293-10307.	4.0	101
33	Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24032-24045.	4.0	57
34	From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale, 2015, 7, 2374-2390.	2.8	95
35	Chemically Exfoliated MoS ₂ Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21702-21710.	4.0	126
36	Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 2014, 4, 14115-14127.	1.7	101

#	Article	IF	CITATIONS
37	Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: mechanism, and catalytic and electrochemical performance of the resulting hybrids. Journal of Materials Chemistry A, 2014, 2, 7295-7305.	5.2	29
38	Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Advances, 2013, 3, 18323.	1.7	31
39	Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Research, 2013, 6, 216-233.	5.8	199
40	Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. Journal of Alloys and Compounds, 2012, 536, S450-S455.	2.8	16
41	Global and Local Oxidation Behavior of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 7956-7966.	1.5	36
42	Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry, 2011, 21, 298-306.	6.7	173
43	Surface modification of high-performance polymeric fibers by an oxygen plasma. A comparative study of poly(p-phenylene terephthalamide) and poly(p-phenylene benzobisoxazole). Journal of Chromatography A, 2011, 1218, 3781-3790.	1.8	8
44	A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. Journal of Colloid and Interface Science, 2010, 344, 451-459.	5.0	37
45	A study of the surface morphology of poly(p-phenylene terephthalamide) chars using scanning probe microscopy. Polymer Degradation and Stability, 2010, 95, 702-707.	2.7	6
46	Determining the thickness of chemically modified graphenes by scanning probe microscopy. Carbon, 2010, 48, 2657-2660.	5.4	46
47	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432.	1.5	1,230
48	A possible buckybowl-like structure of zeolite templated carbon. Carbon, 2009, 47, 1220-1230.	5.4	243
49	Atomic Vacancy Engineering of Graphitic Surfaces: Controlling the Generation and Harnessing the Migration of the Single Vacancy. Journal of Physical Chemistry C, 2009, 113, 10249-10255.	1.5	34
50	A Combined Experimental and Theoretical Investigation of Atomic-Scale Defects Produced on Graphite Surfaces by Dielectric Barrier Discharge Plasma Treatment. Journal of Physical Chemistry C, 2009, 113, 18719-18729.	1.5	12
51	Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry, 2009, 19, 3591.	6.7	293
52	Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 2009, 25, 5957-5968.	1.6	631
53	New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma. Carbon, 2008, 46, 1364-1367.	5.4	6
54	Graphene Oxide Dispersions in Organic Solvents. Langmuir, 2008, 24, 10560-10564.	1.6	2,511

#	Article	IF	CITATIONS
55	Multiscale Imaging and Tip-Scratch Studies Reveal Insight into the Plasma Oxidation of Graphite. Langmuir, 2007, 23, 8932-8943.	1.6	53
56	Real-Time Monitoring of Polymer Swelling on the Nanometer Scale by Atomic Force Microscopy. Langmuir, 2006, 22, 4728-4733.	1.6	16
57	A Microscopic View of Physical and Chemical Activation in the Synthesis of Porous Carbons. Langmuir, 2006, 22, 9730-9739.	1.6	10
58	Imaging the structure and porosity of active carbons by scanning tunneling microscopy. Carbon, 2006, 44, 2469-2478.	5 . 4	20
59	New structural insights into ordered porous carbon by scanning tunneling microscopy. Microporous and Mesoporous Materials, 2006, 87, 268-271.	2.2	0
60	Surface characterisation of plasma-modified poly(ethylene terephthalate). Journal of Colloid and Interface Science, 2006, 293, 353-363.	5.0	49
61	Effects of oxygen and carbon dioxide plasmas on the surface of poly(ethylene terephthalate). Journal of Colloid and Interface Science, 2005, 287, 57-66.	5.0	42
62	Nanoscale investigation of the structural and chemical changes induced by oxidation on carbon black surfaces: A scanning probe microscopy approach. Journal of Colloid and Interface Science, 2005, 288, 190-199.	5.0	25
63	Structural Investigation of Zeolite-templated, Ordered Microporous Carbon by Scanning Tunneling Microscopy and Raman Spectroscopy. Langmuir, 2005, 21, 8817-8823.	1.6	32
64	Activated Carbon Materials of Uniform Porosity from Polyaramid Fibers. Chemistry of Materials, 2005, 17, 5893-5908.	3.2	82
65	Dispersions of Individual Single-Walled Carbon Nanotubes of High Length. Langmuir, 2004, 20, 5149-5152.	1.6	122
66	Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces. Journal of Colloid and Interface Science, 2003, 258, 276-282.	5.0	25
67	Atomic vacancy-induced friction on the graphite surface: observation by lateral force microscopy. Journal of Microscopy, 2003, 210, 119-124.	0.8	1
68	Surface Characterization of PBO Fibers. Macromolecules, 2003, 36, 8662-8672.	2.2	26
69	Studies on the Thermal Degradation of Poly (p-phenylene benzobisoxazole). Chemistry of Materials, 2003, 15, 4052-4059.	3.2	63
70	Detecting Surface Oxygen Groups on Carbon Nanofibers by Phase Contrast Imaging in Tapping Mode AFM. Langmuir, 2003, 19, 7665-7668.	1.6	11
71	A scanning tunnelling microscopy insight into the preparation of carbon molecular sieves by chemical vapour deposition. Journal of Materials Chemistry, 2003, 13, 1513-1516.	6.7	11
72	Surface Characterization of PPTA Fibers Using Inverse Gas Chromatography. Macromolecules, 2002, 35, 5085-5096.	2.2	36

#	Article	IF	CITATIONS
73	Early Stages of Plasma Oxidation of Graphite:Â Nanoscale Physicochemical Changes As Detected by Scanning Probe Microscopies. Langmuir, 2002, 18, 4314-4323.	1.6	29
74	High resolution imaging of functional group distributions on carbon surfaces by tapping mode atomic force microscopy. Chemical Communications, 2002, , 1790-1791.	2.2	4
75	Preparation and porous texture characteristics of fibrous ultrahigh surface area carbons. Journal of Materials Chemistry, 2002, 12, 3213-3219.	6.7	27
76	Adsorption of n-Alkanes on Plasma-Oxidized High-Strength Carbon Fibers. Journal of Colloid and Interface Science, 2002, 247, 290-302.	5.0	16
77	Title is missing!. Magyar Apróvad Közlemények, 2002, 70, 37-43.	1.4	24
78	Characterization of Microporosity and Mesoporosity in Carbonaceous Materials by Scanning Tunneling Microscopy. Langmuir, 2001, 17, 474-480.	1.6	32
79	Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. Chemistry of Materials, 2001, 13, 4297-4304.	3.2	83
80	Adhesion artefacts in atomic force microscopy imaging. Journal of Microscopy, 2000, 200, 109-113.	0.8	17
81	Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma. Journal of Materials Chemistry, 2000, 10, 1585-1591.	6.7	41