
Martin Münsterkötter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae. Heredity, 2020, 124, 699-713.	2.6	17
2	Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology, 2020, 21, 1070-1087.	4.2	33
3	Chitin and chitosan remodeling defines vegetative development and Trichoderma biocontrol. PLoS Pathogens, 2020, 16, e1008320.	4.7	38
4	Towards the Biological Control of Devastating Forest Pathogens from the Genus Armillaria. Forests, 2019, 10, 1013.	2.1	28
5	Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World Journal of Microbiology and Biotechnology, 2019, 35, 52.	3.6	17
6	Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 2018, 102, 279-295.	3.6	39
7	Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata. FEMS Yeast Research, 2018, 18, .	2.3	28
8	Elucidation of the Two H3K36me3 Histone Methyltransferases Set2 and Ash1 in <i>Fusarium fujikuroi</i> Unravels Their Different Chromosomal Targets and a Major Impact of Ash1 on Genome Stability. Genetics, 2018, 208, 153-171.	2.9	61
9	A New Reference Genome Shows the One-Speed Genome Structure of the Barley Pathogen <i>Ramularia collo-cygni</i> . Genome Biology and Evolution, 2018, 10, 3243-3249.	2.5	30
10	The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Scientific Reports, 2018, 8, 12064.	3.3	25
11	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	3.6	30
12	Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies. FEMS Yeast Research, 2017, 17, .	2.3	20
13	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	7.8	145
14	High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae. Fungal Genetics and Biology, 2017, 108, 44-54.	2.1	7
15	The GATA-Type Transcription Factor Csm1 Regulates Conidiation and Secondary Metabolism in Fusarium fujikuroi. Frontiers in Microbiology, 2017, 8, 1175.	3.5	35
16	Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathogens, 2017, 13, e1006670.	4.7	58
17	A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. ELife, 2016, 5, .	6.0	49
18	Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes. Frontiers in Microbiology, 2016, 7, 1113.	3.5	48

Martin Münsterkötter

#	Article	IF	CITATIONS
19	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	2.5	124
20	Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics, 2016, 17, 953.	2.8	33
21	Clobally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics, 2016, 17, 1015.	2.8	54
22	A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Genome Biology and Evolution, 2016, 8, 681-704.	2.5	125
23	<scp>H</scp> xt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen <i><scp>U</scp>stilago maydis</i> . New Phytologist, 2015, 206, 1086-1100.	7.3	55
24	Molecular analysis of Coxiella burnetii in Germany reveals evolution of unique clonal clusters. International Journal of Medical Microbiology, 2014, 304, 868-876.	3.6	36
25	The Genome Sequence of the Highly Acetic Acid-Tolerant Zygosaccharomyces bailii-Derived Interspecies Hybrid Strain ISA1307, Isolated From a Sparkling Wine Plant. DNA Research, 2014, 21, 299-313.	3.4	62
26	The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer. PLoS ONE, 2014, 9, e110311.	2.5	124
27	Analysis of the Elodea nuttallii Transcriptome in Response to Mercury and Cadmium Pollution: Development of Sensitive Tools for Rapid Ecotoxicological Testing. Environmental Science & Technology, 2013, 47, 8825-8834.	10.0	41
28	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	4.7	406
29	Looking for biomarkers of Hg exposure by transcriptome analysis in the aquatic plantElodea nuttallii. E3S Web of Conferences, 2013, 1, 29004.	0.5	0
30	Genome Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species-Specific Presence of Transposable Elements. Plant Cell, 2012, 24, 1733-1745.	6.6	159
31	FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Research, 2011, 39, D637-D639.	14.5	81
32	Transcriptome responses to aluminum stress in roots of aspen (Populus tremula). BMC Plant Biology, 2010, 10, 185.	3.6	48
33	Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison. Science, 2010, 330, 1546-1548.	12.6	301
34	PEDANT covers all complete RefSeq genomes. Nucleic Acids Research, 2009, 37, D408-D411.	14.5	97
35	The posttranscriptional machinery of Ustilago maydis. Fungal Genetics and Biology, 2008, 45, S40-S46.	2.1	29
36	MIPS: analysis and annotation of genome information in 2007. Nucleic Acids Research, 2007, 36, D196-D201.	14.5	156

Martin Münsterkötter

#	Article	IF	CITATIONS
37	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
38	The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae. BMC Genomics, 2007, 8, 473.	2.8	15
39	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	27.8	1,113
40	FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. Nucleic Acids Research, 2006, 34, D456-D458.	14.5	77
41	MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Research, 2006, 34, D169-D172.	14.5	348
42	MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research, 2006, 34, D436-D441.	14.5	305
43	The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 5539-5545.	14.5	988
44	MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucleic Acids Research, 2004, 32, 459D-462.	14.5	75
45	MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 41D-44.	14.5	522
46	CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Research, 2004, 33, D364-D368.	14.5	288
47	Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Research, 2003, 31, 1121-1135.	14.5	118
48	MIPS: a database for genomes and protein sequences. Nucleic Acids Research, 2002, 30, 31-34.	14.5	724
49	Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains ofSaccharomyces cerevisiae. Yeast, 2002, 19, 403-422.	1.7	51
50	Transcriptional Regulation of the Yeast PHO8 Promoter in Comparison to the Coregulated PHO5 Promoter. Journal of Biological Chemistry, 2000, 275, 22678-22685.	3.4	27
51	Chromatin remodelling at the PHO8 promoter requires SWI–SNF and SAGA at a step subsequent to activator binding. EMBO Journal, 1999, 18, 6407-6414.	7.8	117
52	Cooperative Pho2-Pho4 Interactions at the PHO5 Promoter Are Critical for Binding of Pho4 to UASp1 and for Efficient Transactivation by Pho4 at UASp2. Molecular and Cellular Biology, 1998, 18, 2629-2639.	2.3	68
53	The Homeodomain Protein Pho2 and the Basic-Helix-Loop-Helix Protein Pho4 Bind DNA Cooperatively at the Yeast PHO5 Promoter. Nucleic Acids Research, 1996, 24, 4479-4486.	14.5	68