Bonnie L Bassler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415276/publications.pdf

Version: 2024-02-01

222 papers

42,310 citations

88 h-index 3915

g-index

177

273 all docs

docs citations

273

times ranked

273

22074 citing authors

#	Article	IF	CITATIONS
1	The PqsE-RhlR Interaction Regulates RhlR DNA Binding to Control Virulence Factor Production in <i>Pseudomonas aeruginosa (i). Microbiology Spectrum, 2022, 10, e0210821.</i>	3.0	36
2	LuxT Is a Global Regulator of Low-Cell-Density Behaviors, Including Type III Secretion, Siderophore Production, and Aerolysin Production, in Vibrio harveyi. MBio, 2022, 13, e0362121.	4.1	5
3	Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae. PLoS Biology, 2022, 20, e3001585.	5.6	9
4	Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa <i>lasl</i> Quorum-Sensing Mutant. Journal of Bacteriology, 2022, 204, e0055721.	2.2	5
5	Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annual Review of Microbiology, 2022, 76, 235-257.	7.3	15
6	Quorum sensing across bacterial and viral domains. PLoS Pathogens, 2021, 17, e1009074.	4.7	34
7	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
8	LuxT controls specific quorum-sensing-regulated behaviors in Vibrionaceae spp. via repression of qrr1, encoding a small regulatory RNA. PLoS Genetics, 2021, 17, e1009336.	3.5	13
9	Saccharomyces cerevisiae Requires <i>CFF1</i> To Produce 4-Hydroxy-5-Methylfuran-3(2H)-One, a Mimic of the Bacterial Quorum-Sensing Autoinducer Al-2. MBio, 2021, 12, .	4.1	8
10	Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. ELife, 2021, 10, .	6.0	21
11	Inhibitor Mimetic Mutations in the <i>Pseudomonas aeruginosa</i> PqsE Enzyme Reveal a Protein–Protein Interaction with the Quorum-Sensing Receptor RhIR That Is Vital for Virulence Factor Production. ACS Chemical Biology, 2021, 16, 740-752.	3.4	27
12	Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	16
13	Mechanism underlying the DNA-binding preferences of the Vibrio cholerae and vibriophage VP882 VqmA quorum-sensing receptors. PLoS Genetics, 2021, 17, e1009550.	3.5	6
14	Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111060118.	7.1	10
15	Secreted Proteases Control the Timing of Aggregative Community Formation in Vibrio cholerae. MBio, 2021, 12, e0151821.	4.1	4
16	Discovery of PqsE Thioesterase Inhibitors for <i>Pseudomonas aeruginosa</i> Using DNA-Encoded Small Molecule Library Screening. ACS Chemical Biology, 2020, 15, 446-456.	3.4	22
17	Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling <i>Vibrio cholerae</i> biofilm dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32639-32647.	7.1	26
18	The Vibrio cholerae Quorum-Sensing Protein VqmA Integrates Cell Density, Environmental, and Host-Derived Cues into the Control of Virulence. MBio, 2020, 11 , .	4.1	21

#	Article	IF	CITATIONS
19	Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science, 2020, 369, 71-77.	12.6	106
20	From Biochemistry to Genetics in a Flash of Light. Genetics, 2020, 215, 287-289.	2.9	0
21	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7622-7632.	7.1	82
22	Separating Functions of the Phage-Encoded Quorum-Sensing-Activated Antirepressor Qtip. Cell Host and Microbe, 2020, 27, 629-641.e4.	11.0	31
23	Mechanism underlying autoinducer recognition in the Vibrio cholerae DPO-VqmA quorum-sensing pathway. Journal of Biological Chemistry, 2020, 295, 2916-2931.	3.4	29
24	<i>Vibrio fischeri</i> siderophore production drives competitive exclusion during dualâ€species growth. Molecular Microbiology, 2020, 114, 244-261.	2.5	21
25	Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host and Microbe, 2019, 26, 15-21.	11.0	380
26	The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biology, 2019, 17, e3000429.	5.6	64
27	Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife, 2019, 8, .	6.0	67
28	An autoinducer-independent RhlR quorum-sensing receptor enables analysis of RhlR regulation. PLoS Pathogens, 2019, 15, e1007820.	4.7	30
29	Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers. MBio, 2019, 10, .	4.1	46
30	Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology, 2019, 17, 371-382.	28.6	683
31	Identification of a Molecular Latch that Regulates Staphylococcal Virulence. Cell Chemical Biology, 2019, 26, 548-558.e4.	5.2	18
32	An Autoinducer Analogue Reveals an Alternative Mode of Ligand Binding for the LasR Quorum-Sensing Receptor. ACS Chemical Biology, 2019, 14, 378-389.	3.4	30
33	Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biology, 2019, 17, e3000579.	5.6	43
34	Structural determinants driving homoserine lactone ligand selection in the <i>Pseudomonas aeruginosa</i> LasR quorum-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 245-254.	7.1	68
35	A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell, 2019, 176, 268-280.e13.	28.9	248
36	Title is missing!. , 2019, 17, e3000579.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2019, 17, e3000579.		O
38	Title is missing!. , 2019, 17, e3000579.		0
39	Title is missing!. , 2019, 17, e3000579.		0
40	Title is missing!. , 2019, 17, e3000579.		0
41	Title is missing!. , 2019, 17, e3000579.		0
42	Title is missing!. , 2019, 17, e3000429.		0
43	Title is missing!. , 2019, 17, e3000429.		0
44	Title is missing!. , 2019, 17, e3000429.		0
45	Title is missing!. , 2019, 17, e3000429.		0
46	Title is missing!. , 2019, 17, e3000429.		0
47	Title is missing!. , 2019, 17, e3000429.		0
48	SnapShot: Bacterial Quorum Sensing. Cell, 2018, 174, 1328-1328.e1.	28.9	94
49	Temperature, by Controlling Growth Rate, Regulates CRISPR-Cas Activity in Pseudomonas aeruginosa. MBio, 2018, 9, .	4.1	52
50	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. Advanced Materials, 2018, 30, e1804153.	21.0	62
51	The PqsE and RhlR proteins are an autoinducer synthase–receptor pair that control virulence and biofilm development in <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9411-E9418.	7.1	101
52	Verticalization of bacterial biofilms. Nature Physics, 2018, 14, 954-960.	16.7	92
53	Quorum sensing controls Vibrio cholerae multicellular aggregate formation. ELife, 2018, 7, .	6.0	51
54	Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors. Journal of Biological Chemistry, 2017, 292, 4064-4076.	3.4	199

#	Article	IF	CITATIONS
55	Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2017, 2, 17080.	13.3	95
56	Environmental fluctuation governs selection for plasticity in biofilm production. ISME Journal, 2017, 11, 1569-1577.	9.8	45
57	A Vibrio cholerae autoinducer–receptor pair that controls biofilm formation. Nature Chemical Biology, 2017, 13, 551-557.	8.0	179
58	Not just Salk. Science, 2017, 357, 1105-1106.	12.6	4
59	Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 2017, 8, 327.	12.8	119
60	Quorum sensing controls the <i>Pseudomonas aeruginosa</i> CRISPR-Cas adaptive immune system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 131-135.	7.1	227
61	The RhIR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathogens, 2017, 13, e1006504.	4.7	146
62	Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae. PLoS Genetics, 2017, 13, e1006826.	3.5	41
63	Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. ELife, 2017, 6, .	6.0	65
64	Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 2016, 14, 576-588.	28.6	1,586
65	<i>Vibrio cholerae</i> biofilm growth program and architecture revealed by single-cell live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5337-43.	7.1	159
66	Local and global consequences of flow on bacterial quorum sensing. Nature Microbiology, 2016, 1, 15005.	13.3	137
67	A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing. Cell Host and Microbe, 2016, 19, 470-480.	11.0	134
68	Architectural transitions in <i>Vibrio cholerae</i> biofilms at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2066-72.	7.1	178
69	Time-resolved proteomic analysis of quorum sensing in Vibrio harveyi. Chemical Science, 2016, 7, 1797-1806.	7.4	31
70	Social Evolution Selects for Redundancy in Bacterial Quorum Sensing. PLoS Biology, 2016, 14, e1002386.	5.6	67
71	Structure, Regulation, and Inhibition of the Quorum-Sensing Signal Integrator LuxO. PLoS Biology, 2016, 14, e1002464.	5.6	32
72	The Mechanical World of Bacteria. Cell, 2015, 161, 988-997.	28.9	422

#	Article	IF	CITATIONS
73	Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME Journal, 2015, 9, 1700-1709.	9.8	172
74	Modulating <i>Vibrio cholerae</i> Quorum-Sensing-Controlled Communication Using Autoinducer-Loaded Nanoparticles. Nano Letters, 2015, 15, 2235-2241.	9.1	47
75	Development of Potent Inhibitors of Pyocyanin Production in <i>Pseudomonas aeruginosa</i> Journal of Medicinal Chemistry, 2015, 58, 1298-1306.	6.4	50
76	Differential RNA-seq of <i>Vibrio cholerae</i> identifies the VqmR small RNA as a regulator of biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E766-75.	7.1	191
77	A Qrr Noncoding RNA Deploys Four Different Regulatory Mechanisms to Optimize Quorum-Sensing Dynamics. Cell, 2015, 160, 228-240.	28.9	137
78	Comprehensive analysis reveals how single nucleotides contribute to noncoding RNA function in bacterial quorum sensing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6038-47.	7.1	25
79	Determinants governing ligand specificity of the <scp><i>V</i></scp> <i>ibrio harveyi</i> à€ <scp>L</scp> ux <scp>N</scp> quorumâ€sensing receptor. Molecular Microbiology, 2015, 95, 127-142.	2.5	33
80	Quorum Sensing Regulates the Osmotic Stress Response in Vibrio harveyi. Journal of Bacteriology, 2015, 197, 73-80.	2.2	44
81	Adhesion as a weapon in microbial competition. ISME Journal, 2015, 9, 139-149.	9.8	156
82	<scp>CqsA</scp> â€" <scp>CqsS</scp> quorumâ€sensing signalâ€receptor specificity in <scp><i>P</i></scp> <i>hotobacterium angustum</i> <io>Molecular Microbiology, 2014, 91, 821-833.</io>	2.5	12
83	Caenorhabditis elegans Recognizes a Bacterial Quorum-sensing Signal Molecule through the AWCON Neuron. Journal of Biological Chemistry, 2014, 289, 26566-26573.	3.4	28
84	Filaments in curved streamlines: rapid formation of <i>Staphylococcus aureus </i> biofilm streamers. New Journal of Physics, 2014, 16, 065024.	2.9	50
85	Working together at the interface of physics and biology. Physical Biology, 2014, 11, 053010.	1.8	2
86	Solutions to the Public Goods Dilemma in Bacterial Biofilms. Current Biology, 2014, 24, 50-55.	3.9	307
87	Highly potent, chemically stable quorum sensing agonists for vibrio Cholerae. Chemical Science, 2014, 5, 151-155.	7.4	19
88	Quorum regulatory small <scp>RNAs</scp> repress type <scp>VI</scp> secretion in <scp><i>V</i></scp> <i>ibrook of the companion of the companion</i>	2.5	84
89	Rapid Formation and Flow Around Staphylococcus Aureus Biofilm Streamers. Biophysical Journal, 2014, 106, 422a.	0.5	4
90	A quorum-sensing inhibitor blocks <i>Pseudomonas aeruginosa</i> virulence and biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17981-17986.	7.1	628

#	Article	IF	CITATIONS
91	Bacterial regulatory mechanisms: the gene and beyond. Current Opinion in Microbiology, 2013, 16, 109-111.	5.1	7
92	Quorum Sensing. , 2013, , 495-509.		18
93	Analysis of Activator and Repressor Functions Reveals the Requirements for Transcriptional Control by LuxR, the Master Regulator of Quorum Sensing in Vibrio harveyi. MBio, 2013, 4, .	4.1	81
94	Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. EMBO Journal, 2013, 32, 2158-2171.	7.8	64
95	Cutting through the complexity of cell collectives. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122770.	2.6	111
96	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4345-4350.	7.1	283
97	Individual and Combined Roles of the Master Regulators AphA and LuxR in Control of the Vibrio harveyi Quorum-Sensing Regulon. Journal of Bacteriology, 2013, 195, 436-443.	2.2	117
98	Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios. PLoS Pathogens, 2012, 8, e1002767.	4.7	76
99	Role of the CAI-1 Fatty Acid Tail in the <i>Vibrio cholerae</i> Quorum Sensing Response. Journal of Medicinal Chemistry, 2012, 55, 9669-9681.	6.4	19
100	Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a012427-a012427.	6.2	1,460
101	Microbes as Menaces, Mates & Daedalus, 2012, 141, 67-76.	1.8	8
102	Quorumâ€sensing nonâ€coding small RNAs use unique pairing regions to differentially control mRNA targets. Molecular Microbiology, 2012, 83, 599-611.	2.5	105
103	Ligand and antagonist driven regulation of the <i>Vibrio cholerae</i> quorumâ€sensing receptor CqsS. Molecular Microbiology, 2012, 83, 1095-1108.	2.5	43
104	Microbiology and the Bioeconomy Blueprint. Microbe Magazine, 2012, 7, 156-157.	0.4	2
105	Mechanism of Vibrio cholerae Autoinducer-1 Biosynthesis. ACS Chemical Biology, 2011, 6, 356-365.	3.4	103
106	Protein-Level Fluctuation Correlation at the Microcolony Level and Its Application to the Vibrio harveyi Quorum-Sensing Circuit. Biophysical Journal, 2011, 100, 3045-3053.	0.5	8
107	A Strategy for Antagonizing Quorum Sensing. Molecular Cell, 2011, 42, 199-209.	9.7	246
108	Letters to the Editor. Journal of Microbiology and Biology Education, 2011, 12, 1-1.	1.0	5

#	Article	IF	Citations
109	Active regulation of receptor ratios controls integration of quorumâ€sensing signals in ⟨i⟩Vibrio harveyi⟨ i⟩. Molecular Systems Biology, 2011, 7, 491.	7.2	68
110	Signal production and detection specificity in <i>Vibrio</i> CqsA/CqsS quorumâ€sensing systems. Molecular Microbiology, 2011, 79, 1407-1417.	2.5	128
111	Small molecule probes of the receptor binding site in the Vibrio cholerae CAI-1 quorum sensing circuit. Bioorganic and Medicinal Chemistry, 2011, 19, 6906-6918.	3.0	23
112	AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes and Development, 2011, 25, 397-408.	5.9	266
113	Quorum Sensing in Chromobacterium violaceum: DNA Recognition and Gene Regulation by the CviR Receptor. Journal of Bacteriology, 2011, 193, 3871-3878.	2.2	138
114	A fitness trade-off between local competition and dispersal in <i>Vibrio cholerae</i> biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14181-14185.	7.1	183
115	Probing bacterial transmembrane histidine kinase receptor–ligand interactions with natural and synthetic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5575-5580.	7.1	56
116	Small Cellsâ€"Big Future. Molecular Biology of the Cell, 2010, 21, 3786-3787.	2.1	7
117	Control of the Type 3 Secretion System in <i>Vibrio harveyi</i> by Quorum Sensing through Repression of ExsA. Applied and Environmental Microbiology, 2010, 76, 4996-5004.	3.1	50
118	Measurement of the Copy Number of the Master Quorum-Sensing Regulator of a Bacterial Cell. Biophysical Journal, 2010, 98, 2024-2031.	0.5	57
119	Negative Feedback Loops Involving Small Regulatory RNAs Precisely Control the Vibrio harveyi Quorum-Sensing Response. Molecular Cell, 2010, 37, 567-579.	9.7	123
120	Quantifying the Integration of Quorum-Sensing Signals with Single-Cell Resolution. PLoS Biology, 2009, 7, e1000068.	5.6	145
121	Distinct Sensory Pathways in <i>Vibrio cholerae</i> El Tor and Classical Biotypes Modulate Cyclic Dimeric GMP Levels To Control Biofilm Formation. Journal of Bacteriology, 2009, 191, 169-177.	2.2	98
122	Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clinical and Experimental Metastasis, 2009, 26, 67-76.	3.3	48
123	Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO Journal, 2009, 28, 429-439.	7.8	100
124	The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nature Chemical Biology, 2009, 5, 891-895.	8.0	98
125	A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity. Molecular Cell, 2009, 35, 143-153.	9.7	186
126	Information processing and signal integration in bacterial quorum sensing. Molecular Systems Biology, 2009, 5, 325.	7.2	165

#	Article	IF	Citations
127	Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, 2009, 43, 197-222.	7.6	1,426
128	Observing bacteria through the lens of social evolution. Journal of Biology, 2008, 7, 27.	2.7	37
129	The LuxS-dependent autoinducer Al-2 controls the expression of an ABC transporter that functions in Al-2 uptake in Salmonella typhimurium. Molecular Microbiology, 2008, 42, 777-793.	2.5	319
130	The ⟨i⟩Vibrio harveyi⟨ i⟩ master quorumâ€sensing regulator, LuxR, a TetRâ€type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Molecular Microbiology, 2008, 70, 76-88.	2.5	131
131	A smallâ€RNAâ€mediated negative feedback loop controls quorumâ€sensing dynamics in <i>Vibrio harveyi</i> . Molecular Microbiology, 2008, 70, 896-907.	2.5	68
132	Deducing Receptor Signaling Parameters from In Vivo Analysis: LuxN/Al-1 Quorum Sensing in Vibrio harveyi. Cell, 2008, 134, 461-473.	28.9	101
133	Quorum Sensing Controls Biofilm Formation in <i>Vibrio cholerae</i> through Modulation of Cyclic Di-GMP Levels and Repression of <i>vpsT</i> . Journal of Bacteriology, 2008, 190, 2527-2536.	2.2	378
134	A negative feedback loop involving small RNAs accelerates <i>Vibrio cholerae</i> 's transition out of quorum-sensing mode. Genes and Development, 2008, 22, 226-238.	5.9	110
135	Quorum Sensing Influences Vibrio harveyi Growth Rates in a Manner Not Fully Accounted For by the Marker Effect of Bioluminescence. PLoS ONE, 2008, 3, e1671.	2.5	31
136	Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes and Development, 2007, 21, 221-233.	5.9	248
137	Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11145-11149.	7.1	180
138	Phosphorylation and Processing of the Quorum-Sensing Molecule Autoinducer-2 in Enteric Bacteria. ACS Chemical Biology, 2007, 2, 128-136.	3.4	153
139	The Quorum-Sensing Molecule Autoinducer 2 Regulates Motility and Flagellar Morphogenesis in <i>Helicobacter pylori</i>). Journal of Bacteriology, 2007, 189, 6109-6117.	2.2	84
140	The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 2007, 450, 883-886.	27.8	399
141	The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Molecular Microbiology, 2007, 63, 859-71.	2.5	78
142	Playing the game with nature. BioTechniques, 2007, 42, 123.	1.8	0
143	Bacterial Small-Molecule Signaling Pathways. Science, 2006, 311, 1113-1116.	12.6	868
144	Bacterially Speaking. Cell, 2006, 125, 237-246.	28.9	963

#	Article	IF	Citations
145	Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing. Cell, 2006, 126, 1095-1108.	28.9	258
146	Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Molecular Microbiology, 2006, 60, 1446-1456.	2.5	327
147	Quorum Sensing. , 2006, , 336-353.		3
148	Al-1 Influences the Kinase Activity but Not the Phosphatase Activity of LuxN of Vibrio harveyi. Journal of Biological Chemistry, 2006, 281, 24398-24404.	3.4	51
149	The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes and Development, 2006, 20, 2754-2767.	5.9	204
150	CsrA and three redundant small RNAs regulate quorum sensing in <i>Vibrio cholerae</i> Microbiology, 2005, 58, 1186-1202.	2.5	304
151	Interference with Al-2-mediated bacterial cell–cell communication. Nature, 2005, 437, 750-753.	27.8	268
152	An Expeditious Synthesis of DPD and Boron Binding Studies. Organic Letters, 2005, 7, 569-572.	4.6	121
153	Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer Al-2 in Escherichia coli. Journal of Bacteriology, 2005, 187, 238-248.	2.2	379
154	QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 2005, 21, 319-346.	9.4	3,198
155	Solution Structure and Dynamics of LuxU from Vibrio harveyi, a Phosphotransferase Protein Involved in Bacterial Quorum Sensing. Journal of Molecular Biology, 2005, 347, 297-307.	4.2	20
156	Regulation of LuxPQ Receptor Activity by the Quorum-Sensing Signal Autoinducer-2. Molecular Cell, 2005, 18, 507-518.	9.7	193
157	Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi. Journal of Bacteriology, 2004, 186, 6902-6914.	2.2	487
158	Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 2004, 51, 1521-1521.	2.5	8
159	Editorial policy on genome-scale analyses. Molecular Microbiology, 2004, 52, 311-312.	2.5	1
160	Bacterial social engagements. Trends in Cell Biology, 2004, 14, 648-656.	7.9	295
161	Letter to the Editor:1H,15N, and13C chemical shift assignments of the Vibrio harveyi histidine phosphotransferase protein LuxU. Journal of Biomolecular NMR, 2004, 29, 551-552.	2.8	1
162	Quorum Sensing Regulates Type III Secretion in Vibrio harveyi and Vibrio parahaemolyticus. Journal of Bacteriology, 2004, 186, 3794-3805.	2.2	296

#	Article	IF	CITATIONS
163	Boron Binding with the Quorum Sensing Signal Al-2 and Analogues. Organic Letters, 2004, 6, 2635-2637.	4.6	39
164	The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae. Cell, 2004, 118, 69-82.	28.9	904
165	Salmonella typhimurium Recognizes a Chemically Distinct Form of the Bacterial Quorum-Sensing Signal Al-2. Molecular Cell, 2004, 15, 677-687.	9.7	502
166	Cell-to-cell communication in bacteria: a chemical discourse. Harvey Lectures, 2004, 100, 123-42.	0.2	2
167	Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO Journal, 2003, 22, 870-881.	7.8	253
168	Chemical synthesis of S-ribosyl-l-homocysteine and activity assay as a LuxS substrate. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3897-3900.	2.2	52
169	Quorum sensing controls biofilm formation in <i>Vibrio cholerae</i> . Molecular Microbiology, 2003, 50, 101-104.	2.5	760
170	Lsrâ€mediated transport and processing of Alâ€2 in <i>Salmonella typhimurium</i> Microbiology, 2003, 50, 1411-1427.	2.5	278
171	Chemical communication among bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14549-14554.	7.1	393
172	LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 2003, 6, 191-197.	5.1	616
173	Interspecies communication in bacteria. Journal of Clinical Investigation, 2003, 112, 1291-1299.	8.2	463
174	Two-component control of Quorum Sensing in Gram-Negative Bacteria., 2003,, 313-340.		0
175	Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3129-3134.	7.1	800
176	Mob Psychology. Journal of Bacteriology, 2002, 184, 873-883.	2.2	124
177	Small Talk. Cell, 2002, 109, 421-424.	28.9	704
178	Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae. Cell, 2002, 110, 303-314.	28.9	598
179	Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415, 545-549.	27.8	1,379
180	The languages of bacteria. Genes and Development, 2001, 15, 1468-1480.	5.9	405

#	Article	IF	CITATIONS
181	The LuxS family of bacterial autoinducers: biosynthesis of a novel quorumâ€sensing signal molecule. Molecular Microbiology, 2001, 41, 463-476.	2.5	909
182	Quorum Sensing in Bacteria. Annual Review of Microbiology, 2001, 55, 165-199.	7.3	4,088
183	A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Molecular Microbiology, 2000, 35, 139-149.	2.5	157
184	Regulation of quorum sensing in <i>Vibrio harveyi</i> by LuxO and Sigmaâ€54. Molecular Microbiology, 2000, 36, 940-954.	2.5	288
185	Evidence for a Signaling System inHelicobacter pylori: Detection of aluxS-Encoded Autoinducer. Journal of Bacteriology, 2000, 182, 3638-3643.	2.2	98
186	Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing in <i>Vibrio harveyi</i>). Journal of Bacteriology, 1999, 181, 899-906.	2.2	217
187	Regulation of autoinducer production in Salmonella typhimurium. Molecular Microbiology, 1999, 31, 585-595.	2.5	180
188	A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Molecular Microbiology, 1999, 31, 665-677.	2.5	327
189	How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 1999, 2, 582-587.	5.1	854
190	Multiple signalling systems controlling expression of luminescence in <i>Vibrio harveyi</i> sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 1994, 13, 273-286.	2.5	624
191	Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Molecular Microbiology, 1994, 12, 403-412.	2.5	156
192	Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 1993, 9, 773-786.	2.5	690
193	Chemotaxis to chitin oligosaccharides by Vibriofurnissii, a chitinivorous marine bacterium. Biochemical and Biophysical Research Communications, 1989, 161, 1172-1176.	2.1	30
194	Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling., 0,, 213-232.		7
195	Quorum Signaling and Symbiosis in the Marine Luminous Bacterium <i>Vibrio fischeri</i> ., 0, , 233-250.		18
196	Acylated Homoserine Lactone Signaling in Marine Bacterial Systems., 0,, 251-272.		9
197	Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism. , 0, , 273-289.		3
198	Cell-Cell Signaling within Crown Gall Tumors. , 0, , 291-306.		2

#	Article	IF	CITATIONS
199	A New Look at Secondary Metabolites. , 0, , 307-322.		4
200	Extracellular Peptide Signaling and Quorum Responses in Development, Self-Recognition, and Horizontal Gene Transfer in Bacillus subtilis. , 0, , $13-30$.		2
201	Signal Integration in the Vibrio harveyi and Vibrio cholerae Quorum-Sensing Circuits., 0,, 323-332.		3
202	Signal Trafficking with Bacterial Outer Membrane Vesicles. , 0, , 333-344.		2
203	Cooperative Regulation of Competence Development in Streptococcus pneumoniae: Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor., 0,, 345-362.		12
204	The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in Streptomyces., 0,, 363-377.		3
205	Quorum Quenching: Impact and Mechanisms. , 0, , 379-392.		2
206	Quorum-Sensing Inhibition., 0,, 393-416.		7
207	Interdomain Cross Talk. , 0, , 417-429.		2
208	Quorum Sensing in Fungi., 0,, 443-451.		4
209	Quorum Sensing in Rotifers. , 0, , 453-461.		16
210	Heterocyst Development and Pattern Formation. , 0, , 75-90.		4
211	Metabolites as Intercellular Signals for Regulation of Community-Level Traits. , 0, , 105-129.		18
212	LuxR-Type Proteins in Pseudomonas aeruginosa Quorum Sensing: Distinct Mechanisms with Global Implications. , 0, , $131-144$.		15
213	Intercellular Communication in Marine Vibrio Species: Density-Dependent Regulation of the Expression of Bioluminescence., 0,, 431-445.		10
214	"Quorum Sensing―in Honeybees: Pheromone Regulation of Division of Labor. , 0, , 463-468.		0
215	Intercellular Signaling by Rhomboids in Eukaryotes and Prokaryotes. , 0, , 431-442.		O
216	Role of Quorum-Sensing Regulation in Pathogenesis of Pantoea stewartii subsp. stewartii., 0,, 201-212.		0

#	ARTICLE	IF	CITATIONS
217	Intercompartmental Signal Transduction during Sporulation in <i>Bacillus subtilis</i> ., 0, , 1-12.		O
218	New Insights into Pheromone Control and Response in Enterococcus faecalis pCF10., 0,, 31-49.		2
219	C-Signal Control of Aggregation and Sporulation. , 0, , 51-63.		1
220	Quorum Sensing in <i>Vibrio cholerae</i> Pathogenesis., 0,, 145-160.		0
221	The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in Myxococcus xanthus., 0,, 65-74.		O
222	Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes., 0,, 91-104.		0