List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2414783/publications.pdf Version: 2024-02-01

	3531	7950
28,319	90	149
citations	h-index	g-index
151	151	18477
docs citations	times ranked	citing authors
	28,319 citations 151 docs citations	28,319 citations 90 h-index 151 151 docs citations 151 times ranked

YONCEA 7HU

#	Article	IF	CITATIONS
1	Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 2013, 1, 14766.	10.3	1,080
2	Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental, 2011, 101, 382-387.	20.2	1,034
3	Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy and Environmental Science, 2011, 4, 2922.	30.8	1,005
4	Synthesis of Square Bi2WO6Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chemistry of Materials, 2005, 17, 3537-3545.	6.7	873
5	Dramatic Activity of C ₃ N ₄ /BiPO ₄ Photocatalyst with Core/Shell Structure Formed by Selfâ€Assembly. Advanced Functional Materials, 2012, 22, 1518-1524.	14.9	819
6	Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir, 2012, 28, 8418-8425.	3.5	739
7	Photocatalytic Activity Enhanced via g-C ₃ N ₄ Nanoplates to Nanorods. Journal of Physical Chemistry C, 2013, 117, 9952-9961.	3.1	602
8	Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy, 2019, 59, 644-650.	16.0	553
9	New Type of BiPO ₄ Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye. Environmental Science & Technology, 2010, 44, 5570-5574.	10.0	551
10	Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO ₂ with PANI. Environmental Science & Technology, 2008, 42, 3803-3807.	10.0	488
11	Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C ₆₀ . Environmental Science & Technology, 2008, 42, 8064-8069.	10.0	482
12	Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Applied Catalysis B: Environmental, 2017, 211, 79-88.	20.2	481
13	Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Applied Catalysis B: Environmental, 2014, 147, 82-91.	20.2	461
14	Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization. Langmuir, 2013, 29, 3097-3105.	3.5	452
15	Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy and Environmental Science, 2018, 11, 2581-2589.	30.8	451
16	Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Applied Catalysis B: Environmental, 2010, 98, 138-146.	20.2	441
17	Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. Journal of Physical Chemistry C, 2009, 113, 4605-4611.	3.1	395
18	Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Applied Catalysis B: Environmental, 2014, 152-153, 262-270.	20.2	388

#	Article	IF	CITATIONS
19	Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental, 2017, 209, 729-737.	20.2	380
20	Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Applied Catalysis B: Environmental, 2018, 220, 337-347.	20.2	357
21	Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g ₃ N ₄ /rGO/PDIP Zâ€5cheme Heterojunction. Advanced Materials, 2021, 33, e2007479.	21.0	354
22	Photocatalytic Degradation of RhB by Fluorinated Bi ₂ WO ₆ and Distributions of the Intermediate Products. Environmental Science & Technology, 2008, 42, 2085-2091.	10.0	351
23	Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. Journal of Materials Chemistry, 2012, 22, 11568.	6.7	342
24	Removal of Cr(VI) by 3D TiO 2 -graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 2016, 199, 412-423.	20.2	338
25	Selfâ€Assembled PDINH Supramolecular System for Photocatalysis under Visible Light. Advanced Materials, 2016, 28, 7284-7290.	21.0	333
26	Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Applied Catalysis B: Environmental, 2015, 164, 77-81.	20.2	329
27	Synergetic Effect of Bi ₂ WO ₆ Photocatalyst with C ₆₀ and Enhanced Photoactivity under Visible Irradiation. Environmental Science & Technology, 2007, 41, 6234-6239.	10.0	326
28	Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2020, 277, 119122.	20.2	317
29	Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C ₃ N ₄ Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 27727-27735.	8.0	300
30	Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Applied Catalysis B: Environmental, 2014, 147, 229-235.	20.2	285
31	Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir, 2013, 29, 10566-10572.	3.5	284
32	3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Applied Catalysis B: Environmental, 2017, 205, 228-237.	20.2	272
33	Visible Photocatalytic Activity Enhancement of ZnWO ₄ by Graphene Hybridization. ACS Catalysis, 2012, 2, 2769-2778.	11.2	260
34	Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B: Environmental, 2010, 100, 179-183.	20.2	259
35	Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Applied Catalysis B: Environmental, 2017, 201, 600-606.	20.2	258
36	Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chemical Engineering Journal, 2019, 370, 287-294.	12.7	258

#	Article	IF	CITATIONS
37	Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Applied Catalysis B: Environmental, 2017, 200, 222-229.	20.2	253
38	Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization. Journal of Physical Chemistry C, 2010, 114, 5822-5826.	3.1	252
39	Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO ₄ nanorod. Journal of Materials Chemistry A, 2014, 2, 1174-1182.	10.3	252
40	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie - International Edition, 2021, 60, 8236-8242.	13.8	249
41	Enhanced Photocatalytic Performance for the BiPO _{4–<i>x</i>} Nanorod Induced by Surface Oxygen Vacancy. Journal of Physical Chemistry C, 2013, 117, 18520-18528.	3.1	222
42	Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Applied Catalysis B: Environmental, 2017, 219, 53-62.	20.2	219
43	Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@mpg-C3N4. Applied Catalysis B: Environmental, 2014, 147, 554-561.	20.2	215
44	Polyaniline/Carbon Nitride Nanosheets Composite Hydrogel: A Separationâ€Free and Highâ€Efficient Photocatalyst with 3D Hierarchical Structure. Small, 2016, 12, 4370-4378.	10.0	209
45	A Fullâ€Spectrum Metalâ€Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution. Advanced Materials, 2019, 31, e1806626.	21.0	198
46	Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Applied Catalysis B: Environmental, 2017, 202, 289-297.	20.2	195
47	Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental, 2015, 166-167, 366-373.	20.2	193
48	Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28, 87-115.	11.6	192
49	Photocatalytic Activity Enhancement for Bi ₂ WO ₆ by Fluorine Substitution. Journal of Physical Chemistry C, 2009, 113, 19633-19638.	3.1	189
50	Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Applied Catalysis B: Environmental, 2013, 138-139, 26-32.	20.2	183
51	Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2018, 232, 175-181.	20.2	183
52	Photodegradation of phenol via C 3 N 4 -agar hybrid hydrogel 3D photocatalysts with free separation. Applied Catalysis B: Environmental, 2016, 183, 263-268.	20.2	181
53	The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1â ^{~,} x photocatalyst. Catalysis Science and Technology, 2013, 3, 3136.	4.1	167
54	Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2019, 255, 117761.	20.2	164

#	Article	IF	CITATIONS
55	Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film. Applied Catalysis B: Environmental, 2016, 180, 324-329.	20.2	162
56	Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy, 2017, 35, 405-414.	16.0	162
57	Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via Ï€-Ï€ interaction and interfacial charge separation. Applied Catalysis B: Environmental, 2020, 271, 118933.	20.2	161
58	Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Applied Catalysis B: Environmental, 2017, 204, 11-20.	20.2	160
59	A Highly Crystalline Perylene Imide Polymer with the Robust Builtâ€In Electric Field for Efficient Photocatalytic Water Oxidation. Advanced Materials, 2020, 32, e1907746.	21.0	160
60	Tuning the K ⁺ Concentration in the Tunnels of α-MnO ₂ To Increase the Content of Oxygen Vacancy for Ozone Elimination. Environmental Science & Technology, 2018, 52, 8684-8692.	10.0	158
61	Enhanced Photocatalytic Activity of ZnWO ₄ Catalyst via Fluorine Doping. Journal of Physical Chemistry C, 2007, 111, 11952-11958.	3.1	157
62	Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Applied Catalysis B: Environmental, 2018, 237, 633-640.	20.2	143
63	Photocatalytic hydrogen generation on bifunctional ternary heterostructured In ₂ S ₃ /MoS ₂ /CdS composites with high activity and stability under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 18406-18412.	10.3	142
64	Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Catalysis Science and Technology, 2011, 1, 1399.	4.1	141
65	Photocatalytic enhancement of hybrid C ₃ N ₄ /TiO ₂ prepared via ball milling method. Physical Chemistry Chemical Physics, 2015, 17, 3647-3652.	2.8	141
66	Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Applied Catalysis B: Environmental, 2009, 89, 425-431.	20.2	139
67	Construction of Interfacial Electric Field via Dualâ€Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2106807.	21.0	139
68	Enhancement of visible photocatalytic performances of a Bi ₂ MoO ₆ –BiOCl nanocomposite with plate-on-plate heterojunction structure. Physical Chemistry Chemical Physics, 2014, 16, 26314-26321.	2.8	138
69	π–π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 240, 225-233.	20.2	136
70	Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat, 2019, 1, e12007.	11.9	134
71	Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Applied Catalysis B: Environmental, 2020, 262, 118262.	20.2	128
72	Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Applied Catalysis B: Environmental, 2013, 142-143, 561-567.	20.2	127

#	Article	IF	CITATIONS
73	Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation. Chemical Engineering Journal, 2020, 397, 125476.	12.7	124
74	A Full‧pectrum Porphyrin–Fullerene D–A Supramolecular Photocatalyst with Giant Builtâ€In Electric Field for Efficient Hydrogen Production. Advanced Materials, 2021, 33, e2101026.	21.0	122
75	Fluorine mediated photocatalytic activity of BiPO4. Applied Catalysis B: Environmental, 2014, 147, 851-857.	20.2	121
76	Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 2018, 231, 251-261.	20.2	121
77	Enhancement of photocatalytic performance via a P3HT-g-C ₃ N ₄ heterojunction. Journal of Materials Chemistry A, 2015, 3, 2741-2747.	10.3	119
78	Enhancement of photocatalytic activity for BiPO ₄ via phase junction. Journal of Materials Chemistry A, 2014, 2, 13041-13048.	10.3	118
79	Designed synthesis of a p-Ag ₂ S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. Journal of Materials Chemistry A, 2019, 7, 6482-6490.	10.3	117
80	Controlled synthesis of a highly dispersed BiPO ₄ photocatalyst with surface oxygen vacancies. Nanoscale, 2015, 7, 13943-13950.	5.6	116
81	Preparation of visible light-driven g-C ₃ N ₄ @ZnO hybrid photocatalyst via mechanochemistry. Physical Chemistry Chemical Physics, 2014, 16, 17627-17633.	2.8	112
82	Supramolecular Zinc Porphyrin Photocatalyst with Strong Reduction Ability and Robust Builtâ€In Electric Field for Highly Efficient Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101392.	19.5	111
83	Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization. Journal of Molecular Catalysis A, 2011, 340, 77-82.	4.8	110
84	Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 236, 428-435.	20.2	108
85	Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition. Nature Communications, 2021, 12, 4152.	12.8	106
86	Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 236, 205-211.	20.2	105
87	Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2022, 312, 121438.	20.2	105
88	Photocatalytic activity enhancement of PDI supermolecular via π-π action and energy level adjusting with graphene quantum dots. Applied Catalysis B: Environmental, 2021, 281, 119547.	20.2	104
89	Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 2067.	12.8	99
90	Short-Range π–π Stacking Assembly on P25 TiO ₂ Nanoparticles for Enhanced Visible-Light Photocatalysis. ACS Catalysis, 2017, 7, 652-663.	11.2	98

#	Article	IF	CITATIONS
91	Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. Applied Catalysis B: Environmental, 2015, 172-173, 100-107.	20.2	94
92	Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 202-212.	20.2	93
93	Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Applied Catalysis B: Environmental, 2018, 239, 61-67.	20.2	92
94	Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. Applied Catalysis B: Environmental, 2015, 176-177, 306-314.	20.2	86
95	Three-dimensional photocatalysts with a network structure. Journal of Materials Chemistry A, 2017, 5, 5661-5679.	10.3	86
96	An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via π-π interaction for efficient visible photocatalytic oxidation. Applied Catalysis B: Environmental, 2021, 291, 120059.	20.2	86
97	Fluorination of ZnWO4Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environmental Science & Technology, 2008, 42, 8516-8521.	10.0	83
98	Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catalysis Today, 2019, 332, 227-235.	4.4	83
99	Separationâ€Free Polyaniline/TiO ₂ 3D Hydrogel with High Photocatalytic Activity. Advanced Materials Interfaces, 2016, 3, 1500502.	3.7	81
100	Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Applied Catalysis B: Environmental, 2016, 194, 105-110.	20.2	81
101	Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. Applied Catalysis B: Environmental, 2020, 276, 119150.	20.2	78
102	Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. Applied Catalysis B: Environmental, 2021, 287, 119957.	20.2	73
103	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catalysis Science and Technology, 2018, 8, 1686-1695.	4.1	70
104	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	20.2	68
105	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
106	Research progress on methane conversion coupling photocatalysis and thermocatalysis. , 2021, 3, 519-540.		67
107	High Photocatalytic Oxygen Evolution via Strong Builtâ€In Electric Field Induced by High Crystallinity of Perylene Imide Supramolecule. Advanced Materials, 2022, 34, e2102354.	21.0	67
108	Electron Donor–Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Science, 2022, 9, e2201134.	11.2	62

#	Article	IF	CITATIONS
109	Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. Journal of Molecular Catalysis A, 2010, 331, 7-14.	4.8	61
110	Enhancement of mineralization ability of C3N4via a lower valence position by a tetracyanoquinodimethane organic semiconductor. Journal of Materials Chemistry A, 2014, 2, 11432-11438.	10.3	61
111	Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride. Applied Catalysis B: Environmental, 2022, 306, 121142.	20.2	61
112	Highly Efficient Organic Photocatalyst with Full Visible Light Spectrum through π–π Stacking of TCNQ–PTCDI. ACS Applied Materials & Interfaces, 2016, 8, 30225-30231.	8.0	60
113	Interfacial internal electric field and oxygen vacancies synergistically enhance photocatalytic performance of bismuth oxychloride. Journal of Hazardous Materials, 2021, 402, 123470.	12.4	60
114	Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. National Science Review, 2020, 7, 652-659.	9.5	58
115	Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances. Applied Catalysis B: Environmental, 2020, 272, 118897.	20.2	58
116	Double-defect-induced polarization enhanced OV-BiOBr/Cu2â [~] 'xS high-low junction for boosted photoelectrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2022, 314, 121502.	20.2	58
117	Dramatic visible activity in phenol degradation of TCNQ@TiO2 photocatalyst with core–shell structure. Applied Catalysis B: Environmental, 2014, 160-161, 44-50.	20.2	55
118	Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. Journal of Materials Science and Technology, 2020, 49, 133-143.	10.7	54
119	Ultrathin TiO ₂ (B) Nanosheets as the Inductive Agent for Transfrering H ₂ O ₂ into Superoxide Radicals. ACS Applied Materials & Interfaces, 2017, 9, 15533-15540.	8.0	51
120	Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. Journal of Molecular Catalysis A, 2011, 348, 100-105.	4.8	50
121	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Science China Chemistry, 2018, 61, 1205-1213.	8.2	50
122	Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization. Journal of Solid State Chemistry, 2011, 184, 1433-1438.	2.9	49
123	A superior photocatalytic performance of a novel Bi ₂ SiO ₅ flower-like microsphere via a phase junction. Nanoscale, 2014, 6, 15222-15227.	5.6	48
124	Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Applied Catalysis B: Environmental, 2018, 226, 616-623.	20.2	47
125	Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. CrystEngComm, 2012, 14, 8076.	2.6	45
126	Thermodynamic and dynamic dual regulation Bi ₂ O ₂ CO ₃ /Bi ₅ O ₇ I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2020, 8, 10252-10259.	10.3	45

#	Article	IF	CITATIONS
127	TiO ₂ @Perylene Diimide Fullâ€&pectrum Photocatalysts via Semiâ€Core–Shell Structure. Small, 2019, 15, e1903933.	10.0	44
128	Create a strong internal electric-field on PDI photocatalysts for boosting phenols degradation via preferentially exposing π-conjugated planes up to 100%. Applied Catalysis B: Environmental, 2022, 300, 120762.	20.2	43
129	Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chinese Journal of Catalysis, 2020, 41, 474-484.	14.0	41
130	Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS ES&T Engineering, 2022, 2, 140-157.	7.6	41
131	Efficient and stable H2O2 production from H2O and O2 on BiPO4 photocatalyst. Applied Catalysis B: Environmental, 2022, 316, 121675.	20.2	41
132	Photocatalytic and photoelectrochemical properties of in situ carbon hybridized BiPO4 films. Applied Catalysis A: General, 2012, 435-436, 93-98.	4.3	39
133	Resin-based photo-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals. Applied Catalysis B: Environmental, 2022, 315, 121525.	20.2	39
134	Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Applied Catalysis B: Environmental, 2018, 230, 49-57.	20.2	38
135	Ultrathin perylene imide nanosheet with fast charge transfer enhances photocatalytic performance. Applied Catalysis B: Environmental, 2021, 298, 120585.	20.2	37
136	Enhanced photocatalytic activity of PTCDI-C60 via π–π interaction. Applied Catalysis B: Environmental, 2018, 238, 302-308.	20.2	35
137	Accurate guided alternating atomic layer enhance internal electric field to steering photogenerated charge separation for enhance photocatalytic activity. Applied Catalysis B: Environmental, 2021, 298, 120536.	20.2	32
138	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	9.5	31
139	Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C ₃ N ₄ . New Journal of Chemistry, 2021, 45, 6611-6617.	2.8	30
140	An anion exchange strategy for construction of a novel Bi ₂ SiO ₅ /Bi ₂ MoO ₆ heterostructure with enhanced photocatalytic performance. Catalysis Science and Technology, 2018, 8, 3278-3285.	4.1	28
141	Photocatalytic production of H2O2 from water and dioxygen only under visible light using organic polymers: Systematic study of the effects of heteroatoms. Applied Catalysis B: Environmental, 2021, 299, 120666.	20.2	22
142	Highly efficient photocatalytic hydrogen production via porphyrin-fullerene supramolecular photocatalyst with donor-acceptor structure. Chemical Engineering Journal, 2022, 444, 136621.	12.7	22
143	TiO2/Al(H2PO4)3 composite film as separation-free and washing-resistance photocatalyst. Applied Catalysis B: Environmental, 2017, 204, 43-48.	20.2	20
144	Controlled Synthesis of Higher Interfacial Electron Transfer Graphiteâ€Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity. Solar Rrl, 2021, 5, 2000453.	5.8	19

#	Article	IF	CITATIONS
145	Visibleâ€Lightâ€Promoted Efficient Aerobic Dehydrogenation of Nâ€Heterocycles by a Tiny Organic Semiconductor Under Ambient Conditions. European Journal of Organic Chemistry, 2020, 2020, 1956-1960.	2.4	18
146	A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance. Journal of Materials Science and Technology, 2022, 124, 53-64.	10.7	18
147	Ultrathin triphenylamine–perylene diimide polymer with D–A structure for photocatalytic oxidation of <i>N</i> â€heterocycles using ambient air. EcoMat, 2022, 4, .	11.9	10
148	Efficient photothermal degradation on Bi12CoO20 sillenite with a strong internal electric field induced by the thermal effect. Applied Catalysis B: Environmental, 2022, 313, 121452.	20.2	8
149	Catalytic activity of porous carbon nitride regulated by polyoxometalates under visible light. RSC Advances, 2020, 10, 8255-8260.	3.6	7
150	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie, 2021, 133, 8317-8323.	2.0	6
151	Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Letters. 2020. 61, 152010.	1.4	3