List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2414109/publications.pdf Version: 2024-02-01

	172457	254184
2,618	29	43
citations	h-index	g-index
110	110	2444
112	112	2444
docs citations	times ranked	citing authors
	2,618 citations 112 docs citations	2,618 citations 112 112 docs citations 12457 h-index 112 112 times ranked

#	Article	IF	CITATIONS
1	Fabrication of CdS nanospheres-based hybrid solar cells having increased efficiency. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
2	Effect of ultra-thin CdSexTe1â^'x interface layer on parameters of CdTe solar cells. Solar Energy, 2022, 234, 128-136.	6.1	7
3	Titanium dioxide (TiOâ,,)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 2022, 10, 100262.	5.2	102
4	Preparation and Characterization of Supported Molybdenum Doped TiO2 on α-Al2O3 Ceramic Substrate for the Photocatalytic Degradation of Ibuprofen (IBU) under UV Irradiation. Catalysts, 2022, 12, 562.	3.5	5
5	Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes, 2022, 10, 1113.	2.8	3
6	The effect of ZnCl2 and CdCl2 treatment on ZnS/CdS junction partner on CdTe cell performance. Materials Science in Semiconductor Processing, 2022, 149, 106860.	4.0	10
7	Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiation. Materials Science in Semiconductor Processing, 2021, 123, 105591.	4.0	28
8	Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation. Separations, 2021, 8, 25.	2.4	26
9	Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations, 2021, 8, 24.	2.4	15
10	Deposition of CdSeTe alloys using CdTe—CdSe mixed powder source material in a close-space sublimation process. Journal of Materials Science: Materials in Electronics, 2021, 32, 9685-9693.	2.2	3
11	Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere. Journal of Materials Science: Materials in Electronics, 2021, 32, 10018-10027.	2.2	5
12	Processing CdS- and CdSe-containing window layers for CdTe solar cells. Journal Physics D: Applied Physics, 2021, 54, 215103.	2.8	3
13	Silver Doped Zinc Stannate (Ag-ZnSnO3) for the Photocatalytic Degradation of Caffeine under UV Irradiation. Water (Switzerland), 2021, 13, 1290.	2.7	21
14	Effect of CdS and CdSe pre-treatment on interdiffusion with CdTe in CdS/CdTe and CdSe/CdTe heterostructures. Materials Science in Semiconductor Processing, 2021, 128, 105750.	4.0	11
15	Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. Separations, 2020, 7, 71.	2.4	10
16	Synthesis, Characterization, and Photocatalytic Evaluation of Manganese (III) Phthalocyanine Sensitized ZnWO4 (ZnWO4MnPc) for Bisphenol A Degradation under UV Irradiation. Nanomaterials, 2020, 10, 2139.	4.1	26
17	Structural, morphological, optical analyses of Ni-doped CdS thin films and their photovoltaic performance in hybrid solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 12932-12942.	2.2	2
18	Transparent and conductive CdS:Ca thin films for optoelectronic applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4

#	Article	IF	CITATIONS
19	Growth of Cu ₂ ZnSnS ₄ (CZTS) thin films using short sulfurization periods. Materials Research Express, 2019, 6, 056401.	1.6	23
20	Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)3 (CTSSe) thin films using dip-coated Cu–Sn precursor. Journal of Materials Science: Materials in Electronics, 2019, 30, 12612-12618.	2.2	18
21	Structural, optical and Schottky diode properties of Cu2ZnSnS4 thin films grown by two-stage method. Journal of Materials Science: Materials in Electronics, 2019, 30, 10435-10442.	2.2	16
22	Cu(In,Ga)Te ₂ film growth by a two-stage technique utilizing rapid thermal processing. Semiconductor Science and Technology, 2019, 34, 035011.	2.0	4
23	Surface modification of CBD-grown CdS thin films for hybrid solar cell applications. Optik, 2019, 185, 256-263.	2.9	18
24	Determination of optimum Er-doping level to get high transparent and low resistive Cd1 â^' xErxS thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 5662-5669.	2.2	4
25	Enhanced efficiency of CdS/P3HT hybrid solar cells via interfacial modification. Turkish Journal of Physics, 2019, 43, 116-125.	1.1	5
26	A research on growth and characterization of CdS:Eu thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	24
27	Alloying and phase transformation in CdS/CdSe bilayers annealed with or without CdCl2. Materials Science in Semiconductor Processing, 2019, 91, 90-96.	4.0	12
28	CZTS layers formed under sulfur-limited conditions at above atmospheric pressure. Materials Science in Semiconductor Processing, 2019, 90, 101-106.	4.0	17
29	Cu(In,Ca)(Se,Te)2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation. Thin Solid Films, 2018, 649, 30-37.	1.8	10
30	Electrodeposition of Si–DLC nanocomposite film and its electronic application. Microsystem Technologies, 2018, 24, 2287-2294.	2.0	13
31	Sm-doped CdS thin films prepared by spray pyrolysis: a structural, optical, and electrical examination. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	27
32	Optical and electrical optimization of dysprosium-doped CdS thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 14774-14782.	2.2	13
33	An evaluation of structural, optical and electrical characteristics of Ag/ZnO rods/SnO2/In–Ga Schottky diode. Journal of Materials Science: Materials in Electronics, 2018, 29, 10054-10060.	2.2	1
34	Influence of pre-annealing Cu-Sn on the structural properties of CZTSe thin films grown by a two-stage process. Materials Science in Semiconductor Processing, 2018, 88, 234-238.	4.0	9
35	Effect of heat treating metallic constituents on the properties of Cu2ZnSnSe4 thin films formed by a two-stage process. Thin Solid Films, 2017, 624, 167-174.	1.8	25
36	Enhancement in the optical and electrical properties of CdS thin films through Ga and K co-doping. Materials Science in Semiconductor Processing, 2017, 60, 45-52.	4.0	40

#	Article	IF	CITATIONS
37	The Investigation of Current-Conduction Mechanisms of Te/NaF:CdS/SnO2 Structure in Wide Temperature Range of 80–400ÂK. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 409-417.	1.2	13
38	Synthesis and characterization of ZnO micro-rods and temperature-dependent characterizations of heterojunction of ZnO microrods/CdTe and ZnO microrods/ZnTe structures. Sensors and Actuators A: Physical, 2017, 261, 56-65.	4.1	4
39	Interpretation of barrier height inhomogeneities in Au/In2S3/SnO2/(In-Ga) structures at low temperatures. Journal of Materials Science: Materials in Electronics, 2017, 28, 7501-7508.	2.2	10
40	Physical properties of CdS:Ga thin films synthesized by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 3191-3199.	2.2	22
41	Role of Mg doping in the structural, optical, and electrical characteristics of ZnO-based DSSCs. Turkish Journal of Physics, 2017, 41, 160-170.	1.1	6
42	Influence of copper composition and reaction temperature on the properties of CZTSe thin films. Journal of Alloys and Compounds, 2016, 682, 610-617.	5.5	31
43	Effect of precursor stacking order and sulfurization temperature on compositional homogeneity of CZTS thin films. Thin Solid Films, 2016, 615, 402-408.	1.8	41
44	A novel nanostructured Culn0.7Ga0.3(Se0.4Te0.6)2/SLG multinary compounds thin films: For photovoltaic applications. Materials Letters, 2015, 142, 273-276.	2.6	4
45	Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices and Microstructures, 2015, 88, 299-307.	3.1	68
46	Cu(In,Ga)(Se,Te)2 pentenary thin films formed by reaction of precursor layers. Thin Solid Films, 2015, 592, 189-194.	1.8	7
47	Defect-mediated ferromagnetism in ZnO:Mn nanorods. Applied Physics A: Materials Science and Processing, 2014, 115, 313-321.	2.3	8
48	Structural, morphological, optical and electrical evolution of spray deposited ZnO rods co-doped with indium and sulphur atoms. Journal of Materials Science: Materials in Electronics, 2014, 25, 1810-1816.	2.2	10
49	The influence of Cu-doping on structural, optical and photocatalytic properties of ZnO nanorods. Materials Chemistry and Physics, 2014, 148, 528-532.	4.0	40
50	Synthesis and fabrication of Mg-doped ZnO-based dye-synthesized solar cells. Journal of Materials Science: Materials in Electronics, 2014, 25, 3173-3178.	2.2	21
51	Synthesis and characterization of Mn-doped ZnO nanorods grown in an ordered periodic honeycomb pattern using nanosphere lithography. Ceramics International, 2014, 40, 7753-7759.	4.8	24
52	Temperature and tellurium (Te) dependence of electrical characterization and surface properties for a chalcopyrite structured schottky barrier diode. Journal of Alloys and Compounds, 2014, 585, 178-184.	5.5	10
53	Optical and Structural Properties of Nanostructured Culn_{0.7}Ga_{0.3}(Se<SUB>(1â [~] <l>x</l>)</SU Chalcopyrite Thin Films—Effect of Stoichiometry and Annealing. Journal of Nanoscience and Nanotechnology. 2014. 14. 5002-5010	JB>Te< 0.9	;SUB><: 7
54	The influence of stoichiometry and annealing temperature on the properties of Culn 0.7 Ga 0.3 Se 2 and Culn 0.7 Ga 0.3 Te 2 thin films. Thin Solid Films, 2013, 545, 64-70.	1.8	15

#	Article	IF	CITATIONS
55	The effect of metal work function on the barrier height of metal/CdS/SnO2/In–Ga structures. Current Applied Physics, 2013, 13, 1306-1310.	2.4	15
56	The influence of annealing temperature and tellurium (Te) on electrical and dielectrical properties of Al/p-CIGSeTe/Mo Schottky diodes. Current Applied Physics, 2013, 13, 1112-1118.	2.4	17
57	Defect-induced room temperature ferromagnetism in B-doped ZnO. Ceramics International, 2013, 39, 4609-4617.	4.8	30
58	Influence of the annealing atmosphere on structural, optical and magnetic properties of Co-doped ZnO microrods. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1244-1249.	2.7	7
59	ZnO and ZnS microrods coated on glass and photocatalytic activity. Applied Surface Science, 2012, 258, 4861-4865.	6.1	31
60	A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi. Journal of Alloys and Compounds, 2012, 517, 80-86.	5.5	24
61	Schottky diode properties of CuInSe2 films prepared by a two-step growth technique. Sensors and Actuators A: Physical, 2012, 185, 73-81.	4.1	37
62	Effects of Cu diffusion-doping on structural, optical, and magnetic properties of ZnO nanorod arrays grown by vapor phase transport method. Journal of Applied Physics, 2012, 111, 013903.	2.5	25
63	The influence of diffusion temperature on the structural, optical, and magnetic properties of nickelâ€doped zinc oxysulfide thin films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 160-166.	1.8	8
64	Fabrication and structural, electrical characterization of i-ZnO/n-ZnO nanorod homojunctions. Current Applied Physics, 2012, 12, 1326-1333.	2.4	16
65	Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chemical Physics Letters, 2012, 525-526, 72-76.	2.6	62
66	Structural and electrical characterization of rectifying behavior in n-type/intrinsic ZnO-based homojunctions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 588-593.	3.5	11
67	Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature. Thin Solid Films, 2012, 520, 2532-2536.	1.8	23
68	Structural, optical and magnetic properties of Zn1â^'xMnxO micro-rod arrays synthesized by spray pyrolysis method. Thin Solid Films, 2012, 520, 5172-5178.	1.8	32
69	Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method. Applied Surface Science, 2011, 257, 9293-9298.	6.1	88
70	On the mechanism of current-transport in Cu/CdS/SnO2/In–Ga structures. Journal of Alloys and Compounds, 2011, 509, 5555-5561.	5.5	45
71	The influence of diffusion temperature on the structural, optical and magnetic properties of manganese-doped zinc oxysulfide thin films. Journal of Solid State Chemistry, 2011, 184, 2683-2689.	2.9	28
72	The influence of substrate temperature on electrical properties of Cu/CdS/SnO2 Schottky diode. Physica B: Condensed Matter, 2011, 406, 4355-4360.	2.7	14

#	Article	IF	CITATIONS
73	Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation. Materials Chemistry and Physics, 2011, 130, 340-345.	4.0	52
74	Microstructural, optical and magnetic properties of cobalt-doped zinc oxysulfide thin films. Materials Chemistry and Physics, 2011, 130, 800-805.	4.0	13
75	Degradation of Candida albicans on TiO2 and Ag-TiO2 thin films prepared by sol–gel and nanosuspensions. Journal of Sol-Gel Science and Technology, 2011, 60, 23-32.	2.4	26
76	Preparation and characterization of new window material CdS thin films at low substrate temperature (<300K) with vacuum deposition. Materials Science in Semiconductor Processing, 2011, 14, 120-127.	4.0	26
77	Fabrication of p-type CuSCN/n-type micro-structured ZnO heterojunction structures. Thin Solid Films, 2011, 519, 3679-3685.	1.8	21
78	Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films, 2010, 518, 4076-4080.	1.8	90
79	Structural and electrical characterization of ZnO-based homojunctions. Journal of Alloys and Compounds, 2010, 496, 560-565.	5.5	10
80	Nickel diffusion in polycrystalline CuInSe2 thin films with a <112> fiber texture. Thin Solid Films, 2009, 517, 2851-2854.	1.8	5
81	Structural characterization of Zn1â^'xCdxO (0≤â‰ੳ.20) microrods grown by spray pyrolysis. Materials Science in Semiconductor Processing, 2009, 12, 118-121.	4.0	6
82	The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe Thin Films. Applied Surface Science, 2009, 256, 1566-1572.	6.1	34
83	Effects of annealing temperature on the structural and optical properties of ZnO hexagonal pyramids. Journal of Alloys and Compounds, 2009, 478, 367-370.	5.5	36
84	The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnSe thin films. Journal of Alloys and Compounds, 2009, 487, 280-285.	5.5	45
85	Effective atomic numbers and electron densities of CuGaSe ₂ semiconductor in the energy range 6–511 keV. X-Ray Spectrometry, 2008, 37, 490-494.	1.4	17
86	Structural, optical and magnetic properties of Cd1â^'xCoxS thin films prepared by spray pyrolysis. Physica B: Condensed Matter, 2008, 403, 3740-3745.	2.7	71
87	Effective atomic numbers and electron densities for CdSe and CdTe semiconductors. Radiation Measurements, 2008, 43, 1437-1442.	1.4	43
88	Structure and nanomechanical properties of CdTe thin films. Journal of Materials Processing Technology, 2008, 198, 202-206.	6.3	9
89	Influence of fluorine doping on structural, electrical and optical properties of spray pyrolysis ZnS films. Thin Solid Films, 2008, 516, 2913-2916.	1.8	61
90	Structural, optical and magnetic properties of Zn1â^'xCoxO thin films prepared by spray pyrolysis. Thin Solid Films, 2008, 516, 7899-7902.	1.8	34

#	Article	IF	CITATIONS
91	Structural, magnetic and optical properties of Co-diffused CdTe thin films. Journal of Alloys and Compounds, 2008, 456, 6-9.	5.5	36
92	The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. Journal of Alloys and Compounds, 2008, 466, 447-450.	5.5	178
93	Determination of Mass Attenuation Coefficients for CuInSe2 and CuGaSe2 Semiconductors. AIP Conference Proceedings, 2007, , .	0.4	0
94	Effects of CdCl ₂ treatment on properties of CdTe thin films grown by evaporation at low substrate temperatures. Crystal Research and Technology, 2007, 42, 890-894.	1.3	20
95	Effects of substrate temperature and post-deposition anneal on properties of evaporated cadmium telluride films. Thin Solid Films, 2007, 515, 3079-3084.	1.8	39
96	Synthesis and characterization of spray pyrolysis Zinc Oxide microrods. Thin Solid Films, 2007, 515, 3448-3451.	1.8	74
97	Structure and optical properties of Zn1â^'xFexO thin films prepared by ultrasonic spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 138, 74-77.	3.5	38
98	Effect of substrate temperature and post-deposition annealing on the properties of evaporated CdSe thin films. Physica Status Solidi (B): Basic Research, 2007, 244, 497-504.	1.5	24
99	Temperature dependence of ZnO rods produced by ultrasonic spray pyrolysis method. Materials Chemistry and Physics, 2007, 106, 227-230.	4.0	33
100	Ag diffusion in ZnS thin films prepared by spray pyrolysis. Materials Letters, 2007, 61, 5239-5242.	2.6	36
101	Structural, electrical and optical properties of Cd1â [~] xZnxO thin films and alloying effects on Kβ/Kα intensity ratios. X-Ray Spectrometry, 2006, 35, 165-168.	1.4	6
102	K shell fluorescence yield of Cd and Zn in Cd1â^'xZnxS thin films. Chemical Physics Letters, 2006, 427, 132-136.	2.6	6
103	Alloying effects on Kβ/Kα intensity ratios and electrical properties in Cd1ⰒxZnxS semi-conductor alloys. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 95, 133-139.	2.3	8
104	Copper diffusion in ZnS thin films. Physica Status Solidi A, 2004, 201, 2948-2952.	1.7	18
105	Measurement of diffusion coefficients of Ag in YBa2Cu3O7by the EDXRF technique. X-Ray Spectrometry, 2003, 32, 363-366.	1.4	10
106	Light-assisted deposition of CdS thin films. Journal Physics D: Applied Physics, 2001, 34, 3109-3112.	2.8	9
107	Molybdenum diffusion in CulnSe2 thin films. Journal of Materials Science Letters, 2000, 19, 1521-1524.	0.5	4
108	Production of CuInSe2 thin films by a sequential processes of evaporations and selenization. Journal of Materials Science, 1999, 34, 4579-4584.	3.7	30

#	Article	IF	CITATIONS
109	Formation of p-type CdS thin films by laser-stimulated copper diffusion. Journal Physics D: Applied Physics, 1999, 32, L125-L128.	2.8	21
110	Levels of cesium radionuclides in lichens and mosses from the province of Ordu in the Eastern Black Sea area of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 1997, 222, 87-92.	1.5	11
111	llmproved performance of CdS powder-based hybrid solar cells through surface modification. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	0