Yuji Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly. Accounts of Chemical Research, 2013, 46, 312-326.	15.6	559
2	Boronic acid building blocks: tools for self assembly. Chemical Communications, 2011, 47, 1124-1150.	4.1	466
3	Colorimetric chiral recognition by a molecular sensor. Nature, 1996, 382, 522-524.	27.8	451
4	Boronic acid building blocks: tools for sensing and separation. Chemical Communications, 2011, 47, 1106.	4.1	361
5	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	4.1	131
6	Fluorescent alizarin–phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. Journal of Materials Chemistry, 2005, 15, 2889.	6.7	105
7	Chirality-Transfer Control Using a Heterotopic Zinc(II) Porphyrin Dimer. Journal of the American Chemical Society, 2001, 123, 12700-12701.	13.7	92
8	Detection of anions using a fluorescent alizarin–phenylboronic acid ensemble. Chemical Communications, 2005, , 2846.	4.1	79
9	Near-Infrared Absorbing Boron-dibenzopyrromethenes that Serve As Light-Harvesting Sensitizers for Polymeric Solar Cells. Organic Letters, 2011, 13, 4574-4577.	4.6	79
10	Boronate self-assemblies with embedded Au nanoparticles: preparation, characterization and their catalytic activities for the reduction of nitroaromatic compounds. Journal of Materials Chemistry, 2012, 22, 24124.	6.7	67
11	Isothiouronium-derived simple fluorescent chemosensors of anions. Perkin Transactions II RSC, 2002, , 1455.	1.1	65
12	Boron–dibenzopyrromethene-based organic dyes for application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5204-5211.	10.3	62
13	Synthesis of a new type of dibenzopyrromethene–boron complex with near-infrared absorption property. Tetrahedron Letters, 2010, 51, 1600-1602.	1.4	56
14	A New Family of Indoaniline-Derived Calix[4]arenes:Â Synthesis and Optical Recognition Properties as a Chromogenic Receptor1. Journal of Organic Chemistry, 1996, 61, 3758-3765.	3.2	52
15	Visible-to-Near-Infrared Light-Driven Photocatalytic Hydrogen Production Using Dibenzo-BODIPY and Phenothiazine Conjugate as Organic Photosensitizer. ACS Applied Energy Materials, 2019, 2, 448-458.	5.1	52
16	2,3-Naphtho-Fused BODIPYs as Near-Infrared Absorbing Dyes. Journal of Organic Chemistry, 2016, 81, 1310-1315.	3.2	48
17	A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water. Journal of Materials Chemistry A, 2014, 2, 15846-15852.	10.3	44
18	Thermo-responsive white-light emission based on tetraphenylethylene- and rhodamine B-containing boronate nanoparticles. Chemical Communications, 2015, 51, 118-121.	4.1	44

Үил Киво

#	Article	IF	CITATIONS
19	Boronate microparticle-supported nano-palladium and nano-gold catalysts for chemoselective hydrogenation of cinnamaldehyde in environmentally preferable solvents. Green Chemistry, 2014, 16, 3230-3236.	9.0	43
20	Experimental and theoretical study of near-infrared absorbing naphthoquinone methide dyes with a nonplanar geometry. Journal of the American Chemical Society, 1991, 113, 2868-2873.	13.7	42
21	Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array. Chemical Communications, 2016, 52, 7838-7841.	4.1	40
22	Dansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in water. RSC Advances, 2012, 2, 6555.	3.6	37
23	White-light emitting boronate microparticles for potential use as reusable bright chemosensors in water. Chemical Communications, 2013, 49, 9869.	4.1	36
24	Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11, 3790-3796.	7.4	34
25	White-light emissive materials based on dynamic polymerization in supramolecular chemistry. Polymer, 2017, 128, 257-275.	3.8	32
26	Effective cation-assisted chirality induction using a dibenzo-diaza-30-crown-10 with bis(zinc(ii)) Tj ETQq0 0 0 rgBT http://www.rsc.org/suppdata/cc/b4/b403684k/. Chemical Communications, 2004, , 1394.	/Overlock 4.1	10 Tf 50 46 29
27	Selenium-containing BODIPY dyes as photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2018, 6, 6208-6215.	5.5	29
28	A near-infrared organic photosensitizer for use in dye-sensitized photoelectrochemical water splitting. Chemical Communications, 2017, 53, 6784-6787.	4.1	28
29	Fabrication of Soft Submicrospheres by Sequential Boronate Esterification and Their Dynamic Behavior. ChemPlusChem, 2012, 77, 201-209.	2.8	26
30	Synthesis of a dibenzo-BODIPY-incorporating phenothiazine dye as a panchromatic sensitizer for dye-sensitized solar cells. New Journal of Chemistry, 2017, 41, 10367-10375.	2.8	26
31	Resorcin[4]arene cavitand with 1,3,2-benzodiazaborolyl walls as a fluorescence receptor for ammonium cations. Chemical Communications, 2010, 46, 3604.	4.1	24
32	Fluorescent chirality recognition by simple boronate ensembles with aggregation-induced emission capability. Chemical Communications, 2017, 53, 10144-10147.	4.1	23
33	Naked-Eye Detectable Chiral Recognition Using a Chromogenic Receptor Analytical Sciences, 1998, 14, 183-189.	1.6	22
34	Ï€-Expanded dibenzo-BODIPY with near-infrared light absorption: Investigation of photosensitizing properties of NiO-based p-type dye-sensitized solar cells. Dyes and Pigments, 2019, 170, 107613.	3.7	19
35	Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Transactions, 2019, 48, 688-695.	3.3	18
36	Surface modification of a polyvinyl alcohol sponge with functionalized boronic acids to develop porous materials for multicolor emission, chemical sensing and 3D cell culture. Chemical Communications, 2017, 53, 3563-3566.	4.1	17

Үил Киво

#	Article	IF	CITATIONS
37	Room-Temperature Phosphorescence of Thiophene Boronate Ester-Cross Linked Polyvinyl Alcohol; A Triplet-to-Singlet FRET-Induced Multi-Color Afterglow Luminescence with Sulforhodamine B. Bulletin of the Chemical Society of Japan, 2021, 94, 1204-1209.	3.2	15
38	Selective anion-induced helical aggregation of chiral amphiphilic polythiophenes with isothiouronium-appended pendants. Supramolecular Chemistry, 2011, 23, 13-18.	1.2	14
39	Synthesis of a borylated boron–dibenzopyrromethene dye enabling the visual detection of H ₂ O ₂ vapor. RSC Advances, 2014, 4, 37973-37978.	3.6	14
40	Roomâ€Temperature Phosphorescenceâ€active Boronate Particles: Characterization and Ratiometric Afterglowâ€sensing Behavior by Surface Grafting of Rhodamine B. Chemistry - an Asian Journal, 2020, 15, 787-795.	3.3	14
41	A Fluorescence Sensor Array Based on Zinc(II) arboxyamidoquinolines: Toward Quantitative Detection of ATP**. Chemistry - A European Journal, 2021, 27, 11344-11351.	3.3	13
42	Molecular Manipulation Based on Allosteric Crown-Appended Units and Related Systems. Journal of Nanoscience and Nanotechnology, 2006, 6, 1489-1509.	0.9	12
43	A Zn2+-coordinated boronate dipyrrin as a chemodosimeter toward hydrogen peroxide. Journal of Materials Chemistry C, 2017, 5, 3684-3691.	5.5	10
44	Boronate sol–gel method for one-step fabrication of polyvinyl alcohol hydrogel coatings by simple cast- and dip-coating techniques. RSC Advances, 2020, 10, 86-94.	3.6	10
45	Water-dispersible boronate nanoparticles as support materials for noble metals in the hydrogenation of levulinic acid to γ-valerolactone. Supramolecular Chemistry, 2016, 28, 91-97.	1.2	9
46	A robust ruthenium complex with nonyl-substituted bpy ligand for dye-sensitized photoelectrochemical cell application. Inorganica Chimica Acta, 2018, 471, 467-474.	2.4	9
47	A benzofuran[<i>b</i>]-fused BODIPY as an efficient sensitizer for photocatalytic hydrogen production. Sustainable Energy and Fuels, 2021, 5, 3676-3686.	4.9	9
48	Near-infrared-absorbing Photodetectors Based on Naphtho[1,3,2]oxazaborinine-type Dibenzo-BODIPY Dyes. Chemistry Letters, 2018, 47, 300-303.	1.3	8
49	Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. New Journal of Chemistry, 2018, 42, 7392-7398.	2.8	8
50	Formation of emissive nanoparticles from tetraphenylethylene-containing boronate macrocycles: preparation, characterization and functionalization. Journal of Materials Chemistry C, 2018, 6, 11052-11062.	5.5	8
51	Thieno[1,3,2]oxazaborinine-containing aza-BODIPYs with near infrared absorption bands: synthesis, photophysical properties, and device applications. New Journal of Chemistry, 2020, 44, 29-37.	2.8	8
52	Chemical stimulus-responsive tricyanopyrroline-based ICT chromophore as a potential environment-sensitive probe. Dyes and Pigments, 2021, 185, 108927.	3.7	8
53	Synthesis and triplet sensitization of bis(arylselanyl)BOPHYs; potential application in triplet–triplet annihilation upconversion. New Journal of Chemistry, 2021, 45, 6091-6099.	2.8	4
54	Chromogenic Receptor: from Cation Recognition to Chiral Recognition Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 506-516.	0.1	4

Үил Киво

#	Article	IF	CITATIONS
55	Nearâ€Infrared Roomâ€Temperature Phosphorescence in Arylselanyl BODIPYâ€Doped Materials. ChemPhotoChem, 2022, 6, .	3.0	4
56	Chirality induction in a dibenzo-30-crown-10 congener promoted by an ion-pair coordinated self-assembly. New Journal of Chemistry, 2003, 27, 221-223.	2.8	3
57	Asymmetrical benzo[a]-fused N2O2-boron-chelated BODIPYs as red to near-infrared absorbing chromophores: synthesis, characteristics and device applications for opto-electronics. Materials Advances, 2021, 2, 1059-1071.	5.4	3
58	Chiral recognition coupled with chemometrics using boronate ensembles containing D–π–A cyanostilbenes. Chemical Communications, 2021, 57, 12952-12955.	4.1	2
59	Detection of phosphates in water utilizing a Eu ³⁺ -mediated relay mechanism. New Journal of Chemistry, 2022, 46, 1839-1844.	2.8	2
60	Metal Ionically-controlled Optical Signaling Based on a Chromoionophore-derived Calix[4]crown. Supramolecular Chemistry, 2002, 14, 171-177.	1.2	1
61	A ratiometric afterglow response of aluminium ions in methanolâ€waterv. Chemistry - an Asian Journal, 0, , .	3.3	1
62	Metal Ionically-controlled Optical Signaling Based on a Chromoionophore-derived Calix[4]crown. Supramolecular Chemistry, 2002, 14, 461-467.	1.2	0
63	White-Light Emissive Materials Based on Supramolecular Approach. , 2021, , 409-443.		0
64	Cover Feature: Nearâ€Infrared Roomâ€Temperature Phosphorescence in Arylselanyl BODIPYâ€Doped Materials (ChemPhotoChem 6/2022). ChemPhotoChem, 2022, 6, .	3.0	0