
Jean-Luc Vay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Physical Review Letters, 2014, 113, 245002.	7.8	767
2	A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm. Computer Physics Communications, 2016, 203, 66-82.	7.5	175
3	Simulation of beams or plasmas crossing at relativistic velocity. Physics of Plasmas, 2008, 15, .	1.9	166
4	Noninvariance of Space- and Time-Scale Ranges under a Lorentz Transformation and the Implications for the Study of Relativistic Interactions. Physical Review Letters, 2007, 98, 130405.	7.8	125
5	Two-Color Laser-Ionization Injection. Physical Review Letters, 2014, 112, 125001.	7.8	96
6	A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. Journal of Computational Physics, 2013, 243, 260-268.	3.8	89
7	2020 roadmap on plasma accelerators. New Journal of Physics, 2021, 23, 031101.	2.9	89
8	Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame. Journal of Computational Physics, 2011, 230, 5908-5929.	3.8	83
9	Novel methods in the Particle-In-Cell accelerator Code-Framework Warp. Computational Science & Discovery, 2012, 5, 014019.	1.5	83
10	Warp-X: A new exascale computing platform for beam–plasma simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 476-479.	1.6	68
11	Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 234013.	1.5	66
12	Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm. Journal of Computational Physics, 2013, 248, 33-46.	3.8	60
13	Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams. Physics of Plasmas, 2004, 11, 2928-2934.	1.9	58
14	Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization. Nuclear Instruments & Methods in Physics Research B, 2015, 350, 116-121.	1.4	56
15	Identification of Coupling Mechanisms between Ultraintense Laser Light and Dense Plasmas. Physical Review X, 2019, 9, .	8.9	53
16	Exascale applications: skin in the game. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190056.	3.4	53
17	Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 1-7.	1.6	52
18	Suppressing the numerical Cherenkov instability in FDTD PIC codes. Journal of Computational Physics, 2014, 267, 1-6.	3.8	50

#	Article	IF	CITATIONS
19	Computational Methods in the Warp Code Framework for Kinetic Simulations of Particle Beams and Plasmas. IEEE Transactions on Plasma Science, 2014, 42, 1321-1334.	1.3	46
20	Beam dynamics of the Neutralized Drift Compression Experiment-II, a novel pulse-compressing ion accelerator. Physics of Plasmas, 2010, 17, 056704.	1.9	44
21	Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor. Lecture Notes in Computer Science, 2016, , 339-353.	1.3	42
22	Mesh refinement for particle-in-cell plasma simulations: Applications to and benefits for heavy ion fusion. Laser and Particle Beams, 2002, 20, 569-575.	1.0	41
23	The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator. , 2010, , .		41
24	Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations. Physics of Plasmas, 2011, 18, .	1.9	41
25	A node-centered local refinement algorithm for Poisson's equation in complex geometries. Journal of Computational Physics, 2004, 201, 34-60.	3.8	39
26	Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm. Journal of Computational Physics, 2014, 258, 689-704.	3.8	39
27	Thermal emittance from ionization-induced trapping in plasma accelerators. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	37
28	Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator	1.9	36
29	Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver. Computer Physics Communications, 2016, 200, 147-167.	7.5	36
30	Ion acceleration in laser generated megatesla magnetic vortex. Physics of Plasmas, 2019, 26, .	1.9	32
31	An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Computer Physics Communications, 2017, 210, 145-154.	7.5	31
32	Spatial Properties of High-Order Harmonic Beams from Plasma Mirrors: A Ptychographic Study. Physical Review Letters, 2017, 119, 155001.	7.8	30
33	Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods. Physics of Plasmas, 2017, 24, 033115.	1.9	29
34	Vlasov simulations of beams with a moving grid. Computer Physics Communications, 2004, 164, 390-395.	7.5	28
35	Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates. Physical Review E, 2016, 94, 053305.	2.1	28
36	Implementations of mesh refinement schemes for Particle-In-Cell plasma simulations. Computer Physics Communications, 2004, 164, 297-305.	7.5	27

#	Article	IF	CITATIONS
37	Overview of US heavy ion fusion research. Nuclear Fusion, 2005, 45, 131-137.	3.5	27
38	Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas. Computer Physics Communications, 2018, 228, 22-29.	7.5	25
39	Porting WarpX to GPU-accelerated platforms. Parallel Computing, 2021, 108, 102833.	2.1	25
40	Saturation of the Hosing Instability in Quasilinear Plasma Accelerators. Physical Review Letters, 2017, 119, 244801.	7.8	24
41	Asymmetric PML for the absorption of waves. Application to mesh refinement in electromagnetic Particle-In-Cell plasma simulations. Computer Physics Communications, 2004, 164, 171-177.	7.5	23
42	Simulating electron clouds in heavy-ion accelerators. Physics of Plasmas, 2005, 12, 056708.	1.9	23
43	Improved numerical Cherenkov instability suppression in the generalized PSTD PIC algorithm. Computer Physics Communications, 2015, 196, 221-225.	7.5	23
44	Stable discrete representation of relativistically drifting plasmas. Physics of Plasmas, 2016, 23, 100704.	1.9	23
45	Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs. Physics of Plasmas, 2021, 28, .	1.9	23
46	Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in a Lorentz boosted frame. Physics of Plasmas, 2011, 18, 030701.	1.9	22
47	Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses. Physical Review Accelerators and Beams, 2020, 23, .	1.6	21
48	Numerical simulation of the generation of secondary electrons in the High Current Experiment. Physical Review Special Topics: Accelerators and Beams, 2003, 6, .	1.8	20
49	Simulation studies of non-neutral plasma equilibria in an electrostatic trap with a magnetic mirror. Physics of Plasmas, 2007, 14, 052107.	1.9	20
50	Evaluating and Optimizing the NERSC Workload on Knights Landing. , 2016, , .		20
51	Absolute Measurement of Electron-Cloud Density in a Positively Charged Particle Beam. Physical Review Letters, 2006, 97, 054801.	7.8	18
52	Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration. Physics of Plasmas, 2014, 21, .	1.9	18
53	A New Absorbing Layer Boundary Condition for the Wave Equation. Journal of Computational Physics, 2000, 165, 511-521.	3.8	17
54	Progress in heavy ion fusion research. Physics of Plasmas, 2003, 10, 2064-2070.	1.9	17

#	Article	IF	CITATIONS
55	Overview of US heavy-ion fusion progress and plans. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 1-8.	1.6	16
56	Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell. Physics of Plasmas, 2016, 23, 023110.	1.9	16
57	Asymmetric Perfectly Matched Layer for the Absorption of Waves. Journal of Computational Physics, 2002, 183, 367-399.	3.8	15
58	Electron-cloud simulation and theory for high-current heavy-ion beams. Physical Review Special Topics: Accelerators and Beams, 2004, 7, .	1.8	15
59	Heavy-ion-fusion-science: summary of US progress. Nuclear Fusion, 2007, 47, 721-727.	3.5	15
60	Simulations of plasma confinement in an antihydrogen trap. Physics of Plasmas, 2007, 14, 102111.	1.9	15
61	Large-timestep mover for particle simulations of arbitrarily magnetized species. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 52-57.	1.6	15
62	Numerical Stability Improvements for the Pseudospectral EM PIC Algorithm. IEEE Transactions on Plasma Science, 2014, 42, 1339-1344.	1.3	15
63	Electron reflection in thermionic energy converters. Applied Physics Letters, 2018, 112, .	3.3	15
64	Optimization of laser-plasma injector via beam loading effects using ionization-induced injection. Physical Review Accelerators and Beams, 2018, 21, .	1.6	15
65	Overview of theory and modeling in the heavy ion fusion virtual national laboratory. Laser and Particle Beams, 2002, 20, 377-384.	1.0	14
66	Passive and active plasma deceleration for the compact disposal of electron beams. Physics of Plasmas, 2015, 22, .	1.9	14
67	Computational studies and optimization of wakefield accelerators. Journal of Physics: Conference Series, 2008, 125, 012002.	0.4	13
68	Beam energy scaling of ion-induced electron yield fromK+impact on stainless steel. Physical Review Special Topics: Accelerators and Beams, 2006, 9, .	1.8	12
69	A method for obtaining three-dimensional computational equilibrium of non-neutral plasmas using WARP. Journal of Computational Physics, 2007, 225, 1736-1752.	3.8	12
70	Modeling of relativistic plasmas with the Particle-In-Cell method. Comptes Rendus - Mecanique, 2014, 342, 610-618.	2.1	11
71	Scalable spectral solver in Galilean coordinates for eliminating the numerical Cherenkov instability in particle-in-cell simulations of streaming plasmas. Physical Review E, 2020, 102, 013202.	2.1	11
72	Emittance growth due to misalignment in multistage laser-plasma accelerators. Physical Review Accelerators and Beams, 2019, 22, .	1.6	11

#	Article	IF	CITATIONS
73	A three-dimensional electromagnetic particle-in-cell code to simulate heavy ion beam propagation in the reaction chamber. Fusion Engineering and Design, 1996, 32-33, 467-476.	1.9	10
74	Modeling ion-induced electrons in the High Current Experiment. Physics of Plasmas, 2006, 13, 056702.	1.9	10
75	Laser and electron deflection from transverse asymmetries in laser-plasma accelerators. Physical Review E, 2019, 100, 063208.	2.1	10
76	Improving I/O Performance for Exascale Applications Through Online Data Layout Reorganization. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 878-890.	5.6	10
77	An Extended FDTD Scheme for the Wave Equation: Application to Multiscale Electromagnetic Simulation. Journal of Computational Physics, 2001, 167, 72-98.	3.8	9
78	lon source and injector experiments at the HIF/VNL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 134-141.	1.6	9
79	Self-consistent simulations of heavy-ion beams interacting with electron-clouds. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 65-69.	1.6	9
80	A generalized massively parallel ultra-high order FFT-based Maxwell solver. Computer Physics Communications, 2019, 244, 25-34.	7.5	9
81	Two-step perfectly matched layer for arbitrary-order pseudo-spectral analytical time-domain methods. Computer Physics Communications, 2019, 235, 102-110.	7.5	9
82	Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators. Physics of Plasmas, 2020, 27, 113105.	1.9	9
83	Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles. Physical Review Accelerators and Beams, 2016, 19, .	1.6	9
84	Pulse front tilt steering in laser plasma accelerators. Physical Review Accelerators and Beams, 2019, 22, .	1.6	9
85	Measurement and simulation of the UMER beam in the source region. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 441-446.	1.6	8
86	Simulating relativistic beam and plasma systems using an optimal boosted frame. Journal of Physics: Conference Series, 2009, 180, 012006.	0.4	8
87	HiPACE++: A portable, 3D quasi-static particle-in-cell code. Computer Physics Communications, 2022, 278, 108421.	7.5	8
88	Filling in the Roadmap for Self-Consistent Electron Cloud and Gas Modeling. , 0, , .		7
89	US heavy ion beam research for high energy density physics applications and fusion. European Physical Journal Special Topics, 2006, 133, 731-741.	0.2	7
90	Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 678, 48-63.	1.6	7

#	Article	IF	CITATIONS
91	Efficiency of the Perfectly Matched Layer with high-order finite difference and pseudo-spectral Maxwell solvers. Computer Physics Communications, 2015, 194, 1-9.	7.5	7
92	Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 353-357.	1.6	7
93	Investigation of light ion fusion reactions with plasma discharges. Journal of Applied Physics, 2019, 126, .	2.5	7
94	Simulating electron clouds in high-current ion accelerators with solenoid focusing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 146-149.	1.6	6
95	Recent results and future challenges for large scale particle-in-cell simulations of plasma-based accelerator concepts. Journal of Physics: Conference Series, 2009, 180, 012005.	0.4	6
96	Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame. , 2010, , .		6
97	Simulations for Plasma and Laser Acceleration. Reviews of Accelerator Science and Technology, 2016, 09, 165-186.	0.5	6
98	Ultra-low emittance electron beams from two-color laser-ionization injection. AIP Conference Proceedings, 2016, , .	0.4	6
99	Particle-in-cell simulation of plasma-based amplification using a moving window. Physical Review Research, 2020, 2, .	3.6	6
100	PICSAR-QED: a Monte Carlo module to simulate strong-field quantum electrodynamics in particle-in-cell codes for exascale architectures. New Journal of Physics, 2022, 24, 025009.	2.9	6
101	Simulating electron cloud effects in heavy-ion beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 210-215.	1.6	5
102	Production of a high brightness beam from a large surface source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 430-435.	1.6	5
103	New Developments in the Simulation of Advanced Accelerator Concepts. , 2009, , .		5
104	Development and testing of a lithium ion source and injector. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	5
105	WarpIV: In Situ Visualization and Analysis of Ion Accelerator Simulations. IEEE Computer Graphics and Applications, 2016, 36, 22-35.	1.2	5
106	Advanced modeling of field enhanced thermionic emission. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	5
107	Simulation of heavy ion induced electron yield at grazing incidence. Physical Review Special Topics: Accelerators and Beams, 2004, 7, .	1.8	4
108	Quantitative experiments with electrons in a positively charged beam. Physics of Plasmas, 2007, 14, 056701.	1.9	4

#	Article	IF	CITATIONS
109	Measurement and simulation of the time-dependent behavior of the UMER source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 157-160.	1.6	4
110	Heavy ion fusion science research for high energy density physics and fusion applications. Journal of Physics: Conference Series, 2008, 112, 032029.	0.4	4
111	Electron cloud cyclotron resonances in the presence of a short-bunch-length relativistic beam. Physical Review Special Topics: Accelerators and Beams, 2008, 11, .	1.8	4
112	Modeling laser-driven electron acceleration using WARP with Fourier decomposition. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 358-362.	1.6	4
113	Investigation of the dynamics of ionization induced injected electrons under the influence of beam loading effects. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 428-432.	1.6	4
114	Toward the modeling of chains of plasma accelerator stages with WarpX. Journal of Physics: Conference Series, 2020, 1596, 012059.	0.4	4
115	Simulations of future particle accelerators: issues and mitigations. Journal of Instrumentation, 2021, 16, T10002.	1.2	4
116	Energy loss, range, and electron yield comparisons of the CRANGE ion–material interaction code. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 502-505.	1.6	3
117	Application of adaptive mesh refinement to PIC simulations in heavy ion fusion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 347-352.	1.6	3
118	Measurement and simulation of source-generated halos in the University Of Maryland Electron Ring (UMER). , 2007, , .		3
119	Use of the Lorentz-Boosted Frame Transformation to Simulate Free-Electron Laser Amplifier Physics. , 2009, , .		3
120	PIC Codes on the Road to Exascale Architectures. , 2017, , 375-408.		3
121	Modeling of advanced accelerator concepts. Journal of Instrumentation, 2021, 16, T10003.	1.2	3
122	Quantitative electron and gas cloud experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 45-51.	1.6	2
123	An implicit "drift-Lorentz―mover for plasma and beam simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 606, 53-55.	1.6	2
124	Low transverse emittance electron bunches from two-color laser-ionization injection. , 2013, , .		2
125	Ultra-low emittance beam generation using two-color ionization injection in laser-plasma accelerators. , 2015, , .		2
126	Summary report of working group 2: Computations for accelerator physics. AIP Conference Proceedings, 2016, , .	0.4	2

#	Article	IF	CITATIONS
127	Beam breakup studies in a hollow plasma channel. AIP Conference Proceedings, 2017, , .	0.4	2
128	Toward Plasma Wakefield Simulations at Exascale. , 2018, , .		2
129	Convergence in nonlinear laser wakefield accelerators modeling in a Lorentz-boosted frame. Computer Physics Communications, 2019, 238, 102-110.	7.5	2
130	In-situ assessment of device-side compute work for dynamic load balancing in a GPU-accelerated PIC code. , 2021, , .		2
131	Overcoming timestep limitations in boosted-frame particle-in-cell simulations of plasma-based acceleration. Physical Review E, 2021, 104, 055311.	2.1	2
132	Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Codewarp+Posinst. , 0, , .		1
133	Computer Simulaton of the UMER Gridded Gun. , 0, , .		1
134	Experiments Studying Desorbed Gas and Electron Clouds in Ion Accelerators. , 0, , .		1
135	Modeling incoherent electron cloud effects. , 2007, , .		1
136	Particle-in-cell calculations cf the electron cloud in the ILC positron damping ring wigglers. , 2007, , .		1
137	PPPS-2013: Topic 1.2: Numerical stability of the pseudospectral EM PIC algorithm. , 2013, , .		1
138	Alternate operating scenarios for NDCX-II. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 733, 147-152.	1.6	1
139	Emittance control of electron and positron beams in laser plasma accelerators. Proceedings of SPIE, 2015, , .	0.8	1
140	Beam dynamics simulations of optically-enhanced field emission from structured cathodes. AIP Conference Proceedings, 2016, , .	0.4	1
141	Laser technology for Thomson MeV photon sources based on laser-plasma accelerators. AIP Conference Proceedings, 2016, , .	0.4	1
142	Target normal sheath acceleration with a large laser focal diameter. Physics of Plasmas, 2020, 27, .	1.9	1
143	Staged, Guided Laser-Plasma Accelerators Towards Thomson Photon Sources and High Energy Physics. , 2015, , .		1
144	Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a HIF reactor chamber. European Physical Journal Special Topics, 2006, 133, 753-755.	0.2	1

#	Article	IF	CITATIONS
145	Reduced bandwidth Compton photons from a laser-plasma accelerator using tailored plasma channels. Physics of Plasmas, 2021, 28, 123104.	1.9	1
146	A hybrid nodal-staggered pseudo-spectral electromagnetic particle-in-cell method with finite-order centering. Computer Physics Communications, 2022, 279, 108457.	7.5	1
147	A Cross-Platform Numerical Model of Ion-Wall Collisions. , 0, , .		Ο
148	Beam Energy Scaling of Ion-Induced Electron Yield From K+ Ions Impact on Stainless Steel Surfaces. , 0, , .		0
149	Self-consistent 3D modeling of electron cloud dynamics and beam response. , 2007, , .		Ο
150	Absolute measurement of electron cloud density. , 2007, , .		0
151	Modelling of E-cloud build-up in grooved vacuum chambers using posinst. , 2007, , .		0
152	Simulating electron effects in heavy-ion accelerators with solenoid focusing. , 2007, , .		0
153	Simulations of electron cloud effects on the beam dynamics for the FNAL main injector upgrade. , 2007, , .		0
154	Electron cloud measurements in heavy-ion driver for HEDP and inertial fusion energy. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 980-985.	1.4	0
155	Low noise particle-in-cell simulations of 10 GeV laser-plasma accelerator stages. , 2013, , .		0
156	Suppressing numerical cherenkov stabilities in FDTD PIC codes. , 2014, , .		0
157	Laser plasma acceleration using the PW-class BELLA laser. , 2014, , .		0
158	Multi-GeV experiments with the Petawatt class BELLA laser. , 2015, , .		0
159	Beam emittance conservation in multiple consecutive laser-plasma accelerator stages. AIP Conference Proceedings, 2016, , .	0.4	Ο
160	Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage. AIP Conference Proceedings, 2016, , .	0.4	0
161	Efficiency of the perfectly matched layer with high-order finite difference and pseudo-spectral Maxwell solvers. AIP Conference Proceedings, 2016, , .	0.4	Ο
162	Summary of working group 6: Theory and simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 348-349.	1.6	0

#	Article	IF	CITATIONS
163	Narrow bandwidth Thomson photon source and diagnostic development using laser-plasma accelerators. AIP Conference Proceedings, 2017, , .	0.4	0
164	Multi-GeV Electron Beams at the BErkeley Lab Laser Accelerator. , 2015, , .		0
165	Laser plasma acceleration using the PW-class BELLA laser. , 2016, , .		0