Mark Kirkpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413249/publications.pdf Version: 2024-02-01

		22153	21540
112	16,964	59	114
papers	citations	h-index	g-index
117			11740
11/	11/	11/	11/40
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The evolution of mating preferences and the paradox of the lek. Nature, 1991, 350, 33-38.	27.8	1,324
2	Evolution of a Species' Range. American Naturalist, 1997, 150, 1-23.	2.1	1,202
3	Chromosome Inversions, Local Adaptation and Speciation. Genetics, 2006, 173, 419-434.	2.9	984
4	Sex Determination: Why So Many Ways of Doing It?. PLoS Biology, 2014, 12, e1001899.	5.6	916
5	SEXUAL SELECTION AND THE EVOLUTION OF FEMALE CHOICE. Evolution; International Journal of Organic Evolution, 1982, 36, 1-12.	2.3	664
6	Speciation by Natural and Sexual Selection: Models and Experiments. American Naturalist, 2002, 159, S22-S35.	2.1	532
7	GENETIC MODELS OF ADAPTATION AND GENE FLOW IN PERIPHERAL POPULATIONS. Evolution; International Journal of Organic Evolution, 1997, 51, 21-28.	2.3	504
8	THE EVOLUTION OF MATERNAL CHARACTERS. Evolution; International Journal of Organic Evolution, 1989, 43, 485-503.	2.3	502
9	How and Why Chromosome Inversions Evolve. PLoS Biology, 2010, 8, e1000501.	5.6	469
10	Sexual Selection and the Evolution of Female Choice. Evolution; International Journal of Organic Evolution, 1982, 36, 1.	2.3	466
11	QUANTITATIVE GENETICS AND THE EVOLUTION OF REACTION NORMS. Evolution; International Journal of Organic Evolution, 1992, 46, 390-411.	2.3	433
12	What do we need to know about speciation?. Trends in Ecology and Evolution, 2012, 27, 27-39.	8.7	358
13	The strength of indirect selection on female mating preferences. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1282-1286.	7.1	356
14	A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. Journal of Mathematical Biology, 1989, 27, 429-450.	1.9	350
15	Assortative Mating in Animals. American Naturalist, 2013, 181, E125-E138.	2.1	327
16	Are all sex chromosomes created equal?. Trends in Genetics, 2011, 27, 350-357.	6.7	307
17	Evolution of Female Choice and Male Parental Investment in Polygynous Species: The Demise of the "Sexy Son". American Naturalist, 1985, 125, 788-810.	2.1	277
18	The Evolution of Infidelity in Socially Monogamous Passerines: The Strength of Direct and Indirect Selection on Extrapair Copulation Behavior in Females. American Naturalist, 2005, 165, S26-S37.	2.1	272

#	Article	IF	CITATIONS
19	WHEN SOURCES BECOME SINKS: MIGRATIONAL MELTDOWN IN HETEROGENEOUS HABITATS. Evolution; International Journal of Organic Evolution, 2001, 55, 1520-1531.	2.3	251
20	Patterns of quantitative genetic variation in multiple dimensions. Genetica, 2009, 136, 271-284.	1.1	226
21	GOOD GENES AND DIRECT SELECTION IN THE EVOLUTION OF MATING PREFERENCES. Evolution; International Journal of Organic Evolution, 1996, 50, 2125-2140.	2.3	215
22	General Models of Multilocus Evolution. Genetics, 2002, 161, 1727-1750.	2.9	198
23	THE DARWINâ€FISHER THEORY OF SEXUAL SELECTION IN MONOGAMOUS BIRDS. Evolution; International Journal of Organic Evolution, 1990, 44, 180-193.	2.3	183
24	CAN ONE PREDICT THE EVOLUTION OF QUANTITATIVE CHARACTERS WITHOUT GENETICS?. Evolution; International Journal of Organic Evolution, 1991, 45, 441-444.	2.3	181
25	Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. Trends in Ecology and Evolution, 2012, 27, 637-647.	8.7	176
26	Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. Genetical Research, 1994, 64, 57-69.	0.9	174
27	THE EFFECTS OF GENE FLOW ON REINFORCEMENT. Evolution; International Journal of Organic Evolution, 1997, 51, 1764-1772.	2.3	174
28	Transitions Between Male and Female Heterogamety Caused by Sex-Antagonistic Selection. Genetics, 2010, 186, 629-645.	2.9	166
29	Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genetical Research, 2000, 75, 75-81.	0.9	164
30	MEASURING SELECTION AND CONSTRAINT IN THE EVOLUTION OF GROWTH. Evolution; International Journal of Organic Evolution, 1992, 46, 954-971.	2.3	163
31	Reinforcement and divergence under assortative mating. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1649-1655.	2.6	156
32	The Reinforcement of Mating Preferences on an Island. Genetics, 1999, 151, 865-884.	2.9	151
33	Sexual selection can constrain sympatric speciation. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 687-693.	2.6	142
34	Expansion Load and the Evolutionary Dynamics of a Species Range. American Naturalist, 2015, 185, E81-E93.	2.1	137
35	Selection response in traits with maternal inheritance. Genetical Research, 1990, 55, 189-197.	0.9	127
36	Direct Estimation of Genetic Principal Components. Genetics, 2004, 168, 2295-2306.	2.9	124

3

#	Article	IF	CITATIONS
37	The Handicap Mechanism of Sexual Selection Does Not Work. American Naturalist, 1986, 127, 222-240.	2.1	123
38	SEXUAL SELECTION AND SEX LINKAGE. Evolution; International Journal of Organic Evolution, 2004, 58, 683-691.	2.3	117
39	Coalescent patterns for chromosomal inversions in divergent populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 430-438.	4.0	115
40	The Intersexual Genetic Correlation for Lifetime Fitness in the Wild and Its Implications for Sexual Selection. PLoS ONE, 2007, 2, e744.	2.5	115
41	Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles. PLoS Genetics, 2015, 11, e1005237.	3.5	109
42	Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies. PLoS Genetics, 2016, 12, e1006170.	3.5	109
43	How do genetic correlations affect species range shifts in a changing environment?. Ecology Letters, 2012, 15, 251-259.	6.4	96
44	LOCAL ADAPTATION AND THE EVOLUTION OF CHROMOSOME FUSIONS. Evolution; International Journal of Organic Evolution, 2014, 68, 2747-2756.	2.3	94
45	The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature, 2015, 527, 91-94.	27.8	93
46	Genetic segregation and the maintenance of sexual reproduction. Nature, 1989, 339, 300-301.	27.8	86
47	Up hill, down dale: quantitative genetics of curvaceous traits. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1443-1455.	4.0	86
48	REPRODUCTIVE ISOLATION AND LOCAL ADAPTATION QUANTIFIED FOR A CHROMOSOME INVERSION IN A MALARIA MOSQUITO. Evolution; International Journal of Organic Evolution, 2013, 67, 946-958.	2.3	84
49	Reinforcement during ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1259-1263.	2.6	83
50	MALE-BIASED MUTATION, SEX LINKAGE, AND THE RATE OF ADAPTIVE EVOLUTION. Evolution; International Journal of Organic Evolution, 2004, 58, 437-440.	2.3	83
51	Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genetics Selection Evolution, 2005, 37, 1-30.	3.0	83
52	Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies. Frontiers in Genetics, 2017, 8, 10.	2.3	78
53	Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes. Genetics, 2014, 197, 531-541.	2.9	76
54	What Animal Breeding Has Taught Us about Evolution. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 1-19.	8.3	75

#	Article	IF	CITATIONS
55	The Evolution of Genome Structure by Natural and Sexual Selection. Journal of Heredity, 2017, 108, 3-11.	2.4	72
56	Mate choice rules in animals. Animal Behaviour, 2006, 71, 1215-1225.	1.9	71
57	RUNAWAY SEXUAL SELECTION WHEN FEMALE PREFERENCES ARE DIRECTLY SELECTED. Evolution; International Journal of Organic Evolution, 2000, 54, 1862-1869.	2.3	70
58	Measuring Selection and Constraint in the Evolution of Growth. Evolution; International Journal of Organic Evolution, 1992, 46, 954.	2.3	68
59	The evolution of hybrid fitness during speciation. PLoS Genetics, 2019, 15, e1008125.	3.5	66
60	Sex Differences in Recombination in Sticklebacks. G3: Genes, Genomes, Genetics, 2018, 8, 1971-1983.	1.8	63
61	Chromosome inversions, adaptive cassettes and the evolution of species' ranges. Molecular Ecology, 2015, 24, 2046-2055.	3.9	62
62	Perils of Parsimony: Properties of Reduced-Rank Estimates of Genetic Covariance Matrices. Genetics, 2008, 180, 1153-1166.	2.9	61
63	Evolutionary rescue by beneficial mutations in environments that change in space and time. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120082.	4.0	58
64	The Origin of a New Sex Chromosome by Introgression between Two Stickleback Fishes. Molecular Biology and Evolution, 2019, 36, 28-38.	8.9	57
65	The evolution of growth trajectories and other complex quantitative characters. Genome, 1989, 31, 778-783.	2.0	53
66	DO PHYLOGENETIC METHODS PRODUCE TREES WITH BIASED SHAPES?. Evolution; International Journal of Organic Evolution, 1996, 50, 1418-1424.	2.3	52
67	Establishment of New Mutations in Changing Environments. Genetics, 2012, 191, 895-906.	2.9	49
68	Compensatory Drift and the Evolutionary Dynamics of Dosage-Sensitive Duplicate Genes. Genetics, 2016, 202, 765-774.	2.9	46
69	Reinforcement and the Genetics of Hybrid Incompatibilities. Genetics, 2006, 173, 1145-1155.	2.9	45
70	Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti. Genome Biology and Evolution, 2017, 9, 2322-2335.	2.5	45
71	Long Range Linkage Disequilibrium across the Human Genome. PLoS ONE, 2013, 8, e80754.	2.5	45
72	CAN REINFORCEMENT COMPLETE SPECIATION?. Evolution; International Journal of Organic Evolution, 2012, 66, 229-239.	2.3	44

#	Article	IF	CITATIONS
73	Sex chromosomes and male ornaments: a comparative evaluation in ray-finned fishes. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 233-236.	2.6	43
74	Male-biased mutation, sex linkage, and the rate of adaptive evolution. Evolution; International Journal of Organic Evolution, 2004, 58, 437-40.	2.3	43
75	Fish found in flagrante delicto. Nature, 2000, 408, 298-299.	27.8	42
76	The relationship between intraspecific assortative mating and reproductive isolation between divergent populations. Environmental Epigenetics, 2012, 58, 484-492.	1.8	41
77	DELETERIOUS MUTATION AND THE EVOLUTION OF GENETIC LIFE CYCLES. Evolution; International Journal of Organic Evolution, 1995, 49, 512-520.	2.3	33
78	GENE FLOW AND THE COEVOLUTION OF PARASITE RANGE. Evolution; International Journal of Organic Evolution, 2003, 57, 746-754.	2.3	33
79	RUNAWAY SEXUAL SELECTION WHEN FEMALE PREFERENCES ARE DIRECTLY SELECTED. Evolution; International Journal of Organic Evolution, 2000, 54, 1862.	2.3	32
80	Where's the Money? Inversions, Genes, and the Hunt for Genomic Targets of Selection. Genetics, 2012, 190, 1153-1155.	2.9	32
81	A reciprocal translocation radically reshapes sexâ€linked inheritance in the common frog. Molecular Ecology, 2019, 28, 1877-1889.	3.9	30
82	Strong Reinforcing Selection in a Texas Wildflower. Current Biology, 2014, 24, 1995-1999.	3.9	29
83	Mate choice. Current Biology, 2007, 17, R313-R316.	3.9	28
84	Better Estimates of Genetic Covariance Matrices by "Bending―Using Penalized Maximum Likelihood. Genetics, 2010, 185, 1097-1110.	2.9	28
85	Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution; International Journal of Organic Evolution, 2016, 70, 1465-1472.	2.3	27
86	Heterogeneous Histories of Recombination Suppression on Stickleback Sex Chromosomes. Molecular Biology and Evolution, 2021, 38, 4403-4418.	8.9	26
87	Patterns of Neutral Genetic Variation on Recombining Sex Chromosomes. Genetics, 2010, 184, 1141-1152.	2.9	25
88	REINFORCEMENT AND SEX LINKAGE. Evolution; International Journal of Organic Evolution, 2006, 60, 908-921.	2.3	21
89	Symmetry without fear. Nature, 1994, 372, 134-135.	27.8	20
90	MALE-BIASED MUTATION, SEX LINKAGE, AND THE RATE OF ADAPTIVE EVOLUTION. Evolution; International Journal of Organic Evolution, 2004, 58, 437.	2.3	19

π	Article	IF	CITATIONS
91	SEXUAL SELECTION AND SEX LINKAGE. Evolution; International Journal of Organic Evolution, 2004, 58, 683.	2.3	19
92	Limited Introgression between Rock-Wallabies with Extensive Chromosomal Rearrangements. Molecular Biology and Evolution, 2022, 39, .	8.9	17
93	Molecular evolution and the decline of purifying selection with age. Nature Communications, 2021, 12, 2657.	12.8	16
94	Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	15
95	Artificial selection on phenotypically plastic traits. Genetical Research, 1999, 74, 265-270.	0.9	13
96	Inversions are bigger on the X chromosome. Molecular Ecology, 2019, 28, 1238-1245.	3.9	13
97	Strong within-host selection in a maternally inherited obligate symbiont: <i>Buchnera</i> and aphids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
98	Evolution of the canonical sex chromosomes of the guppy and its relatives. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	13
99	Déjà vu all over again. Nature, 1995, 377, 388-389.	27.8	12
100	Is bigger always better?. Nature, 1989, 337, 116-117.	27.8	11
101	The signal of sexâ€specific selection in humans is not an artefact: Reply to Mank et al Molecular Ecology, 2020, 29, 1406-1407.	3.9	11
102	Sexual selection and the evolutionary effects of copying mate choice. Behavioral Ecology and Sociobiology, 1994, 34, 443-449.	1.4	11
103	WHEN SOURCES BECOME SINKS: MIGRATIONAL MELTDOWN IN HETEROGENEOUS HABITATS. Evolution; International Journal of Organic Evolution, 2001, 55, 1520.	2.3	8
104	SEX-RATIO SELECTION WITH MIGRATION: DOES FISHER'S RESULT HOLD?. Evolution; International Journal of Organic Evolution, 1987, 41, 218-221.	2.3	7
105	Genetic improvement of livestock growth using infiniteâ€dimensional analysis. Animal Biotechnology, 1997, 8, 55-61.	1.5	6
106	In sight of speciation. Nature, 2008, 455, 601-602.	27.8	6
107	GENE FLOW AND THE COEVOLUTION OF PARASITE RANGE. Evolution; International Journal of Organic Evolution, 2003, 57, 746.	2.3	5
108	Matrix inversions for chromosomal inversions: A method to construct summary statistics in complex coalescent models. Theoretical Population Biology, 2014, 97, 1-10.	1.1	5

#	Article	IF	CITATIONS
109	REINFORCEMENT AND SEX LINKAGE. Evolution; International Journal of Organic Evolution, 2006, 60, 908.	2.3	4
110	Sex in diploids. Nature, 1989, 342, 232-232.	27.8	3
111	Environmental Plasticity in the Intersexual Correlation and Sex Bias of Gene Expression. Journal of Heredity, 2017, 108, 754-758.	2.4	3
112	Population Genetics, Molecular Evolution, and the Neutral Theory. Selected Papers of Motoo Kimura. Edited by Naoyuki Takahata. University of Chicago Press, Chicago. 1994. 686 pages. Price: Cloth US\$80.00 £63.95 Paper US\$29.95 £23.95. ISBN 0 226 43562 8 Genetical Research, 1995, 66, 179-180.	0.9	0