
Karina Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411272/publications.pdf Version: 2024-02-01

KADINA NIFISEN

#	Article	IF	CITATIONS
1	River levels from multi mission altimetry, a statistical approach. Remote Sensing of Environment, 2022, 270, 112876.	11.0	12
2	Estimating Reservoir Release Using Multi-Source Satellite Datasets and Hydrological Modeling Techniques. Remote Sensing, 2022, 14, 815.	4.0	3
3	Potentials and limitations of Sentinel-3 for river discharge assessment. Advances in Space Research, 2021, 68, 593-606.	2.6	30
4	Synergy between Satellite Altimetry and Optical Water Quality Data towards Improved Estimation of Lakes Ecological Status. Remote Sensing, 2021, 13, 770.	4.0	5
5	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
6	Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATLO3 Photon Data. Remote Sensing, 2021, 13, 3548.	4.0	30
7	Hydraulic Model Calibration Using CryoSatâ€2 Observations in the Zambezi Catchment. Water Resources Research, 2021, 57, e2020WR029261.	4.2	7
8	Multi-Mission Remote Sensing Observations for Optimizing Hydrological Hazard Predictions. , 2021, , .		0
9	Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sensing of Environment, 2020, 237, 111546.	11.0	57
10	A Bigger Picture of how the Tibetan Lakes Have Changed Over the Past Decade Revealed by CryoSatâ€⊋ Altimetry. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033161.	3.3	20
11	On the Performance of Sentinelâ€3 Altimetry Over New Reservoirs: Approaches to Determine Onboard A Priori Elevation. Geophysical Research Letters, 2020, 47, e2020GL088770.	4.0	19
12	On the Contribution of Satellite Altimetry-Derived Water Surface Elevation to Hydrodynamic Model Calibration in the Han River. Remote Sensing, 2020, 12, 4087.	4.0	6
13	Validation of Sentinel-3A Based Lake Level over US and Canada. Remote Sensing, 2020, 12, 2835.	4.0	16
14	River discharge estimation from radar altimetry: Assessment of satellite performance, river scales and methods. Journal of Hydrology, 2020, 583, 124561.	5.4	41
15	CryoSat Ice Baseline-D validation and evolutions. Cryosphere, 2020, 14, 1889-1907.	3.9	26
16	Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco. Remote Sensing of Environment, 2019, 221, 65-79.	11.0	31
17	Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model. Advances in Water Resources, 2018, 112, 17-26.	3.8	36
18	Improving the Coastal Mean Dynamic Topography by Geodetic Combination of Tide Gauge and Satellite Altimetry. Marine Geodesy, 2018, 41, 517-545.	2.0	23

KARINA NIELSEN

#	Article	IF	CITATIONS
19	Informing a hydrological model of the Ogoou \tilde{A} with multi-mission remote sensing data. Hydrology and Earth System Sciences, 2018, 22, 1453-1472.	4.9	37
20	Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 2017, 544, 109-124.	5.4	130
21	CryoSat-2 radar altimetry for monitoring freshwater resources of China. Remote Sensing of Environment, 2017, 200, 125-139.	11.0	47
22	Iceâ€dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion. Geophysical Research Letters, 2017, 44, 7320-7327.	4.0	8
23	The Performance and Potentials of the CryoSat-2 SAR and SARIn Modes for Lake Level Estimation. Water (Switzerland), 2017, 9, 374.	2.7	20
24	River Levels Derived with CryoSat-2 SAR Data Classification—A Case Study in the Mekong River Basin. Remote Sensing, 2017, 9, 1238.	4.0	17
25	Hydrological Applications of Satellite AltimetryRivers, Lakes, Man-Made Reservoirs, Inundated Areas. , 2017, , 459-504.		27
26	Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of Hydrology, 2016, 537, 234-247.	5.4	60
27	Validation of CryoSat-2 SAR mode based lake levels. Remote Sensing of Environment, 2015, 171, 162-170.	11.0	69
28	CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges–Brahmaputra River basin. Remote Sensing of Environment, 2015, 168, 80-89.	11.0	60
29	Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations. International Association of Geodesy Symposia, 2014, , 325-331.	0.4	1
30	Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by meltâ€induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 2013, 118, 1837-1844.	3.4	32
31	Recurring dynamically induced thinning during 1985 to 2010 on Upernavik IsstrÃ,m, West Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 111-121.	2.8	27
32	Crustal uplift due to ice mass variability on Upernavik IsstrÃ,m, west Greenland. Earth and Planetary Science Letters, 2012, 353-354, 182-189.	4.4	18
33	Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophysical Journal International, 2012, 189, 1457-1474.	2.4	39
34	Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density. Cryosphere, 2011, 5, 173-186.	3.9	167