Karina Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411272/publications.pdf

Version: 2024-02-01

34 1,242 20 32 papers citations h-index g-index

44 44 44 1368

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Mass balance of the Greenland ice sheet (2003â \in "2008) from ICESat data â \in " the impact of interpolation, sampling and firn density. Cryosphere, 2011, 5, 173-186.	3.9	167
2	Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 2017, 544, 109-124.	5.4	130
3	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
4	Validation of CryoSat-2 SAR mode based lake levels. Remote Sensing of Environment, 2015, 171, 162-170.	11.0	69
5	CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges–Brahmaputra River basin. Remote Sensing of Environment, 2015, 168, 80-89.	11.0	60
6	Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of Hydrology, 2016, 537, 234-247.	5.4	60
7	Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sensing of Environment, 2020, 237, 111546.	11.0	57
8	CryoSat-2 radar altimetry for monitoring freshwater resources of China. Remote Sensing of Environment, 2017, 200, 125-139.	11.0	47
9	River discharge estimation from radar altimetry: Assessment of satellite performance, river scales and methods. Journal of Hydrology, 2020, 583, 124561.	5.4	41
10	Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophysical Journal International, 2012, 189, 1457-1474.	2.4	39
11	Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrology and Earth System Sciences, 2018, 22, 1453-1472.	4.9	37
12	Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model. Advances in Water Resources, 2018, 112, 17-26.	3.8	36
13	Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by meltâ€induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 2013, 118, 1837-1844.	3.4	32
14	Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco. Remote Sensing of Environment, 2019, 221, 65-79.	11.0	31
15	Potentials and limitations of Sentinel-3 for river discharge assessment. Advances in Space Research, 2021, 68, 593-606.	2.6	30
16	Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data. Remote Sensing, 2021, 13, 3548.	4.0	30
17	Recurring dynamically induced thinning during 1985 to 2010 on Upernavik IsstrÃ,m, West Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 111-121.	2.8	27
18	Hydrological Applications of Satellite AltimetryRivers, Lakes, Man-Made Reservoirs, Inundated Areas. , 2017, , 459-504.		27

#	Article	IF	Citations
19	CryoSat Ice Baseline-D validation and evolutions. Cryosphere, 2020, 14, 1889-1907.	3.9	26
20	Improving the Coastal Mean Dynamic Topography by Geodetic Combination of Tide Gauge and Satellite Altimetry. Marine Geodesy, 2018, 41, 517-545.	2.0	23
21	The Performance and Potentials of the CryoSat-2 SAR and SARIn Modes for Lake Level Estimation. Water (Switzerland), 2017, 9, 374.	2.7	20
22	A Bigger Picture of how the Tibetan Lakes Have Changed Over the Past Decade Revealed by CryoSatâ€2 Altimetry. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033161.	3.3	20
23	On the Performance of Sentinelâ€3 Altimetry Over New Reservoirs: Approaches to Determine Onboard A Priori Elevation. Geophysical Research Letters, 2020, 47, e2020GL088770.	4.0	19
24	Crustal uplift due to ice mass variability on Upernavik IsstrÃ,m, west Greenland. Earth and Planetary Science Letters, 2012, 353-354, 182-189.	4.4	18
25	River Levels Derived with CryoSat-2 SAR Data Classification—A Case Study in the Mekong River Basin. Remote Sensing, 2017, 9, 1238.	4.0	17
26	Validation of Sentinel-3A Based Lake Level over US and Canada. Remote Sensing, 2020, 12, 2835.	4.0	16
27	River levels from multi mission altimetry, a statistical approach. Remote Sensing of Environment, 2022, 270, 112876.	11.0	12
28	Iceâ€dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion. Geophysical Research Letters, 2017, 44, 7320-7327.	4.0	8
29	Hydraulic Model Calibration Using CryoSatâ€⊋ Observations in the Zambezi Catchment. Water Resources Research, 2021, 57, e2020WR029261.	4.2	7
30	On the Contribution of Satellite Altimetry-Derived Water Surface Elevation to Hydrodynamic Model Calibration in the Han River. Remote Sensing, 2020, 12, 4087.	4.0	6
31	Synergy between Satellite Altimetry and Optical Water Quality Data towards Improved Estimation of Lakes Ecological Status. Remote Sensing, 2021, 13, 770.	4.0	5
32	Estimating Reservoir Release Using Multi-Source Satellite Datasets and Hydrological Modeling Techniques. Remote Sensing, 2022, 14, 815.	4.0	3
33	Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations. International Association of Geodesy Symposia, 2014, , 325-331.	0.4	1
34	Multi-Mission Remote Sensing Observations for Optimizing Hydrological Hazard Predictions. , 2021, , .		0