Denis Sereno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vector Borne Diseases and Climate Change. , 2022, , 2029-2038.		0
2	Insight into COVID-19's epidemiology, pathology, and treatment. Heliyon, 2022, 8, e08799.	3.2	19
3	A conceptual model for understanding the zoonotic cutaneous leishmaniasis transmission risk in the Moroccan pre-Saharan area. Parasite Epidemiology and Control, 2022, 17, e00243.	1.8	4
4	A review on the diagnosis of animal trypanosomoses. Parasites and Vectors, 2022, 15, 64.	2.5	54
5	A Histone Deacetylase (HDAC) Inhibitor with Pleiotropic In Vitro Anti-Toxoplasma and Anti-Plasmodium Activities Controls Acute and Chronic Toxoplasma Infection in Mice. International Journal of Molecular Sciences, 2022, 23, 3254.	4.1	9
6	Geographic distribution of Meriones shawi,Psammomys obesus, and Phlebotomus papatasi the main reservoirs and principal vector of zoonotic cutaneous leishmaniasis in the Middle East and North Africa. Parasite Epidemiology and Control, 2022, 17, e00247.	1.8	2
7	Diagnosis of animal trypanosomoses: proper use of current tools and future prospects. Parasites and Vectors, 2022, 15, .	2.5	18
8	Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. International Journal of Molecular Sciences, 2022, 23, 7543.	4.1	6
9	Widespread Mutations in Voltage-Gated Sodium Channel Gene of Cimex lectularius (Hemiptera:) Tj ETQq1 1 2021, 18, 407.	. 0.784314 rgBT 2.6	7 /Overlock 8
10	Updates on Geographical Dispersion of Leishmania Parasites Causing Cutaneous Affections in Algeria. Pathogens, 2021, 10, 267.	2.8	4
11	In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2021, 15, e0009269.	3.0	24
12	Cutaneous Leishmaniasis in Algeria; Highlight on the Focus of M'Sila. Microorganisms, 2021, 9, 962.	3.6	11
13	Bed Bugs (Hemiptera: Cimicidae) Population Diversity and First Record of Cimex hemipterus in Paris. Insects, 2021, 12, 578.	2.2	11
14	Investigation of natural infection of Phlebotomine (Diptera: Psychodidae) by Leishmania in Tunisian endemic regions. Parasite Epidemiology and Control, 2021, 14, e00212.	1.8	1
15	Amputation of a type II diabetic patient with cutaneous leishmaniasis due to Leishmania major. BMC Infectious Diseases, 2021, 21, 1227.	2.9	0
16	Emerging and Re-Emerging Leishmaniases in the Mediterranean Area: What Can Be Learned from a Retrospective Review Analysis of the Situation in Morocco during 1990 to 2010?. Microorganisms, 2020, 8, 1511.	3.6	17
17	Population Genetics of Phlebotomus papatasi from Endemic and Nonendemic Areas for Zoonotic Cutaneous Leishmaniasis in Morocco, as Revealed by Cytochrome Oxidase Gene Subunit I Sequencing. Microorganisms, 2020, 8, 1010.	3.6	8
18	Altitude and hillside orientation shapes the population structure of the Leishmania infantum vector Phlebotomus ariasi. Scientific Reports, 2020, 10, 14443.	3.3	3

#	Article	IF	CITATIONS
19	Functional Characterization of Temporin-SHe, a New Broad-Spectrum Antibacterial and Leishmanicidal Temporin-SH Paralog from the Sahara Frog (Pelophylax saharicus). International Journal of Molecular Sciences, 2020, 21, 6713.	4.1	16
20	Who Bites Me? A Tentative Discriminative Key to Diagnose Hematophagous Ectoparasites Biting Using Clinical Manifestations. Diagnostics, 2020, 10, 308.	2.6	11
21	Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 1684.	4.1	14
22	Bed Bugs (Hemiptera, Cimicidae): Overview of Classification, Evolution and Dispersion. International Journal of Environmental Research and Public Health, 2020, 17, 4576.	2.6	31
23	In Vitro Benznidazole and Nifurtimox Susceptibility Profile of Trypanosoma cruzi Strains Belonging to Discrete Typing Units Tcl, Tcll, and TcV. Pathogens, 2019, 8, 197.	2.8	26
24	A Tiny Change Makes a Big Difference in the Anti-Parasitic Activities of an HDAC Inhibitor. International Journal of Molecular Sciences, 2019, 20, 2973.	4.1	8
25	Leishmania (Mundinia) spp.: from description to emergence as new human and animal Leishmania pathogens. New Microbes and New Infections, 2019, 30, 100540.	1.6	20
26	Meta-analysis and discussion on challenges to translate Leishmania drug resistance phenotyping into the clinic. Acta Tropica, 2019, 191, 204-211.	2.0	15
27	Climatic Factors Impacting Leishmaniasis Risk in a Global View. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 359-373.	0.4	0
28	Vector Borne Diseases and Climate Change. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 349-358.	0.4	1
29	Synthesis of aminophenylhydroxamate and aminobenzylhydroxamate derivatives and in vitro screening for antiparasitic and histone deacetylase inhibitory activity. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 59-66.	3.4	11
30	Antimonial susceptibility and in vivo behaviour of Leishmania major isolates collected in Algeria before and after treatment. Acta Tropica, 2018, 180, 7-11.	2.0	4
31	Mobile Phones Hematophagous Diptera Surveillance in the field using Deep Learning and Wing Interference Patterns. , 2018, , .		2
32	Management of Leishmaniases in the Era of Climate Change in Morocco. International Journal of Environmental Research and Public Health, 2018, 15, 1542.	2.6	37
33	Immunodetection and molecular determination of visceral and cutaneous Leishmania infection using patients' urine. Infection, Genetics and Evolution, 2018, 63, 257-268.	2.3	13
34	Pathogen Species Identification from Metagenomes in Ancient Remains: The Challenge of Identifying Human Pathogenic Species of Trypanosomatidae via Bioinformatic Tools. Genes, 2018, 9, 418.	2.4	5
35	Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Neglected Tropical Diseases, 2018, 12, e0006310.	3.0	27
36	Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, 2017, 57, 1-29.	6.4	220

#	Article	IF	CITATIONS
37	What pre-Columbian mummies could teach us about South American leishmaniases?. Pathogens and Disease, 2017, 75, .	2.0	4
38	Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS ONE, 2017, 12, e0174024.	2.5	48
39	An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Neglected Tropical Diseases, 2017, 11, e0005484.	3.0	38
40	Leishmania antimony resistance/ susceptibility in Algerian foci. Open Journal of Tropical Medicine, 2017, 1, 024-032.	0.2	3
41	A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Neglected Tropical Diseases, 2016, 10, e0004349.	3.0	615
42	Development of a Murine Infection Model with <i>Leishmania killicki</i> , Responsible for Cutaneous Leishmaniosis in Algeria: Application in Pharmacology. BioMed Research International, 2016, 2016, 1-8.	1.9	6
43	Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Frontiers in Immunology, 2016, 7, 212.	4.8	59
44	Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard, France): a geometric morphometrics approach. Parasites and Vectors, 2016, 9, 578.	2.5	26
45	Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum. PLoS Neglected Tropical Diseases, 2016, 10, e0004458.	3.0	152
46	Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur) Tj ETQqO	0 0 rgBT /0 2.5	Ovgrlock 10 ⁻
47	Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasites and Vectors, 2015, 8, 266.	2.5	66
48	New microsatellite markers for multi-scale genetic studies on Phlebotomus ariasi Tonnoir, vector of Leishmania infantum in the Mediterranean area. Acta Tropica, 2015, 142, 79-85.	2.0	5
49	Transmission Potential of Antimony-Resistant Leishmania Field Isolates. Antimicrobial Agents and Chemotherapy, 2014, 58, 6273-6276.	3.2	19
50	Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie, 2013, 95, 388-399.	2.6	45
51	Structure, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii. PLoS ONE, 2013, 8, e70782.	2.5	21
52	Antimony resistance and environment: Elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 200-203.	3.4	19
53	Diversity of the Bacterial and Fungal Microflora from the Midgut and Cuticle of Phlebotomine Sand Flies Collected in North-Western Iran. PLoS ONE, 2012, 7, e50259.	2.5	48

Leishmania infantum nicotinamidase is required for late-stage development in its natural sand fly vector, Phlebotomus perniciosus. International Journal for Parasitology, 2012, 42, 323-327.

#	Article	IF	CITATIONS
55	Wing size and shape variation of Phlebotomus papatasi (Diptera: Psychodidae) populations from the south and north slopes of the Atlas Mountains in Morocco. Journal of Vector Ecology, 2012, 37, 137-147.	1.0	26
56	In vitro susceptibility to antimonials and amphotericin B of Leishmania infantum strains isolated from dogs in a region lacking drug selection pressure. Veterinary Parasitology, 2012, 187, 386-393.	1.8	18
57	The <i>Leishmania</i> nicotinamidase is essential for NAD ⁺ production and parasite proliferation. Molecular Microbiology, 2011, 82, 21-38.	2.5	47
58	Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae). Journal of Vector Ecology, 2011, 36, S144-S147.	1.0	23
59	The fitness of antimony-resistant Leishmania parasites: lessons from the field. Trends in Parasitology, 2011, 27, 141-142.	3.3	18
60	Leishmania antimony resistance: what we know what we can learn from the field. Parasitology Research, 2011, 109, 1225-1232.	1.6	80
61	In vitro activity of nicotinamide/antileishmanial drug combinations. Parasitology International, 2011, 60, 19-24.	1.3	21
62	Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti Salivary Gland, following Infection with Dengue Virus. PLoS Pathogens, 2011, 7, e1001252.	4.7	149
63	Malformations of the genitalia in male Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae). Journal of Vector Ecology, 2010, 35, 13-19.	1.0	12
64	Deciphering the <i>Leishmania</i> exoproteome: what we know and what we can learn. FEMS Immunology and Medical Microbiology, 2010, 58, 27-38.	2.7	32
65	Anti-Leishmanial Lindenane Sesquiterpenes from <i>Hedyosmum angustifolium</i> . Planta Medica, 2010, 76, 365-368.	1.3	27
66	An Experimental Approach for the Identification of Conserved Secreted Proteins in Trypanosomatids. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	5
67	Malformations of the genitalia in male Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae). Journal of Vector Ecology, 2010, 35, 13-9.	1.0	3
68	Leishmania infantum: tuning digitonin fractionation for comparative proteomic of the mitochondrial protein content. Parasitology Research, 2008, 103, 989-992.	1.6	13
69	A protein of the leucine-rich repeats (LRRs) superfamily is implicated in antimony resistance in Leishmania infantum amastigotes. Molecular and Biochemical Parasitology, 2008, 158, 95-99.	1.1	20
70	Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides, 2008, 29, 1526-1533.	2.4	70
71	The <i>Leishmania infantum</i> cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. Biochemical Journal, 2008, 415, 377-386.	3.7	40
72	SIR2-Deficient <i>Leishmania infantum</i> Induces a Defined IFN-γ/IL-10 Pattern That Correlates with Protection. Journal of Immunology, 2007, 179, 3161-3170.	0.8	102

#	Article	IF	CITATIONS
73	Advances and perspectives in Leishmania cell based drug-screening procedures. Parasitology International, 2007, 56, 3-7.	1.3	95
74	Proof of interaction between Leishmania SIR2RP1 deacetylase and chaperone HSP83. Parasitology Research, 2007, 100, 811-818.	1.6	13
75	Sequence diversity and differential expression of Tc52 immuno-regulatory protein in Trypanosoma cruzi: potential implications in the biological variability of strains. Parasitology Research, 2007, 101, 1355-1363.	1.6	14
76	Leishmania amastigotes as targets for drug screening. Parasites and Vectors, 2006, 5, 6.	1.9	13
77	Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies. Immunology, 2006, 119, 529-540.	4.4	18
78	Leishmania infantum amastigotes resistant to nitric oxide cytotoxicity: Impact on in vitro parasite developmental cycle and metabolic enzyme activities. Infection, Genetics and Evolution, 2006, 6, 187-197.	2.3	31
79	Looking for putative functions of the Leishmania cytosolic SIR2 deacetylase. Parasitology Research, 2006, 100, 1-9.	1.6	13
80	Differential infectivity and immunopathology in murine experimental infections by two natural clones belonging to theTrypanosoma cruzil lineage. Parasitology, 2005, 131, 109-119.	1.5	66
81	Experimental study of the function of the excreted/secreted Leishmania LmSIR2 protein by heterologous expression in eukaryotic cell line. Parasites and Vectors, 2005, 4, 1.	1.9	24
82	Lower Nitric Oxide Susceptibility of Trivalent Antimony-Resistant Amastigotes of Leishmania infantum. Antimicrobial Agents and Chemotherapy, 2005, 49, 4406-4409.	3.2	26
83	In Vitro Antileishmanial Activity of Nicotinamide. Antimicrobial Agents and Chemotherapy, 2005, 49, 808-812.	3.2	52
84	Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene, 2005, 363, 85-96.	2.2	73
85	Conversion of Trypanosoma cruzi Tc52 released factor to a protein inducing apoptosis. Tissue and Cell, 2005, 37, 469-478.	2.2	5
86	Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Tropica, 2005, 94, 107-115.	2.0	45
87	Lack of correlation between in vitro susceptibility to Benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Experimental Parasitology, 2004, 108, 24-31.	1.2	53
88	Identification of antibodies to Leishmania silent information regulatory 2 (SIR2) protein homologue during canine natural infections: pathological implications. Immunology Letters, 2003, 86, 155-162.	2.5	25
89	Peptide-based analysis of the amino acid sequence important to the immunoregulatory function of Trypanosoma cruzi Tc52 virulence factor. Immunology, 2003, 109, 147-155.	4.4	27
90	Nitric Oxide-Mediated Proteasome-Dependent Oligonucleosomal DNA Fragmentation in Leishmania amazonensis Amastigotes. Infection and Immunity, 2002, 70, 3727-3735.	2.2	97

#	Article	IF	CITATIONS
91	A Common Mechanism of Stage-regulated Gene Expression in Leishmania Mediated by a Conserved 3′-Untranslated Region Element. Journal of Biological Chemistry, 2002, 277, 19511-19520.	3.4	115
92	Cytoplasmic SIR2 homologue overexpression promotes survival of Leishmania parasites by preventing programmed cell death. Gene, 2002, 296, 139-150.	2.2	72
93	Glutathione S-transferases and related proteins from pathogenic human parasites behave as immunomodulatory factors. Immunology Letters, 2002, 81, 159-164.	2.5	39
94	Experimental studies on the evolution of antimony-resistant phenotype during the in vitro life cycle of Leishmania infantum: implications for the spread of chemoresistance in endemic areas. Acta Tropica, 2001, 80, 195-205.	2.0	26
95	Basic process algebra with deadlocking states. Theoretical Computer Science, 2001, 266, 605-630.	0.9	3
96	Antimonial-Mediated DNA Fragmentation in Leishmania infantum Amastigotes. Antimicrobial Agents and Chemotherapy, 2001, 45, 2064-2069.	3.2	140
97	In Vitro Growth of Leishmania amazonensis Promastigotes Resistant to Pentamidine Is Dependent on Interactions among Strains. Antimicrobial Agents and Chemotherapy, 2001, 45, 1928-1929.	3.2	11
98	DNA Transformation of Leishmania infantum Axenic Amastigotes and Their Use in Drug Screening. Antimicrobial Agents and Chemotherapy, 2001, 45, 1168-1173.	3.2	102
99	Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Molecular and Biochemical Parasitology, 2000, 110, 195-206.	1.1	150
100	A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Molecular and Biochemical Parasitology, 2000, 110, 345-357.	1.1	94
101	Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Tropica, 2000, 74, 25-31.	2.0	35
102	Secreted antigens of the amastigote and promastigote forms ofLeishmania infantuminducing a humoral response in humans and dogs. Parasite, 1999, 6, 121-129.	2.0	14
103	Cloning of a Leishmania major gene encoding for an antigen with extensive homology to ribosomal protein S3a. Gene, 1999, 240, 57-65.	2.2	11
104	Leishmania spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms American Journal of Tropical Medicine and Hygiene, 1999, 60, 41-50.	1.4	64
105	Leishmania major: Cell type dependent distribution of a 43 kDa antigen related to silent information regulatory-2 protein family. Biology of the Cell, 1998, 90, 239-245.	2.0	43
106	Axenically Grown Amastigotes of <i>Leishmania infantum</i> Used as an In Vitro Model To Investigate the Pentavalent Antimony Mode of Action. Antimicrobial Agents and Chemotherapy, 1998, 42, 3097-3102.	3.2	142
107	Phenotypic characterization of Leishmania mexicana pentamidine-resistant promastigotes. Modulation of the resistance during in-vitro developmental life cycle. Comptes Rendus De L'AcadA©mie Des Sciences Série 3, Sciences De La Vie, 1997, 320, 981-987.	0.8	12
108	Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrobial Agents and Chemotherapy, 1997, 41, 972-976.	3.2	212

#	Article	IF	CITATIONS
109	In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrobial Agents and Chemotherapy, 1997, 41, 1898-1903.	3.2	38
110	Leishmaniaspp.: Nitric Oxide-Mediated Metabolic Inhibition of Promastigote and Axenically Grown Amastigote Forms. Experimental Parasitology, 1997, 86, 58-68.	1.2	68
111	Use of an enzymatic micromethod to quantify amastigote stage of Leishmania amazonensis in vitro. Parasitology Research, 1997, 83, 401-403.	1.6	69
112	Influence of medial septal cholinoceptive cells on c-Fos-like proteins induced by soman. Brain Research, 1992, 592, 157-162.	2.2	14
113	Metabarcoding: A Powerful Yet Still Underestimated Approach for the Comprehensive Study of Vector-Borne Pathogen Transmission Cycles and Their Dynamics. , 0, , .		7