
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2410605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
2	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
3	Angiogenesis: regulators and clinical applications. Biochemical Pharmacology, 2001, 61, 253-270.	2.0	643
4	Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrobial Agents and Chemotherapy, 2014, 58, 4875-4884.	1.4	611
5	In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and Biophysical Research Communications, 2004, 323, 264-268.	1.0	530
6	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
7	α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. Journal of Medicinal Chemistry, 2020, 63, 4562-4578.	2.9	437
8	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
9	An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge. Journal of Virology, 2005, 79, 13139-13149.	1.5	372
10	lvermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. Journal of Antimicrobial Chemotherapy, 2012, 67, 1884-1894.	1.3	329
11	Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Research, 2022, 198, 105252.	1.9	302
12	Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research, 2018, 153, 85-94.	1.9	295
13	Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Research, 2010, 87, 125-148.	1.9	289
14	The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replicationin vitro. Hepatology, 2006, 43, 761-770.	3.6	272
15	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	6.0	262
16	Treatment of Argentine hemorrhagic fever. Antiviral Research, 2008, 78, 132-139.	1.9	256
17	The Predominant Mechanism by Which Ribavirin Exerts Its Antiviral Activity In Vitro against Flaviviruses and Paramyxoviruses Is Mediated by Inhibition of IMP Dehydrogenase. Journal of Virology, 2005, 79, 1943-1947.	1.5	254
18	The Viral Polymerase Inhibitor 7-Deaza-2'-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004695.	1.3	250

#	Article	IF	CITATIONS
19	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â^'infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
20	Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrobial Agents and Chemotherapy, 1991, 35, 410-416.	1.4	230
21	The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Research, 1992, 18, 191-207.	1.9	230
22	Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Research, 2021, 31, 272-290.	5.7	229
23	Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 2001, 98, 3554-3561.	0.6	227
24	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	5.8	225
25	Selective inhibitors of picornavirus replication. Medicinal Research Reviews, 2008, 28, 823-884.	5.0	224
26	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	13.7	220
27	SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nature Chemical Biology, 2021, 17, 222-228.	3.9	215
28	HPMPC (cidofovir), PMEA (adefovir) and Related Acyclic Nucleoside Phosphonate Analogues: A Review of their Pharmacology and Clinical Potential in the Treatment of Viral Infections. Antiviral Chemistry and Chemotherapy, 1997, 8, 1-23.	0.3	214
29	Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Research, 2008, 78, 91-102.	1.9	210
30	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	2.9	201
31	Structureâ^'Activity Relationship of New Anti-Hepatitis C Virus Agents: Heterobicycleâ^'Coumarin Conjugates. Journal of Medicinal Chemistry, 2009, 52, 1486-1490.	2.9	199
32	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	1.3	187
33	Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature, 2006, 439, 745-748.	13.7	180
34	Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Research, 2008, 77, 157-162.	1.9	176
35	Sofosbuvir Inhibits Hepatitis E Virus Replication In Vitro and Results in an Additive Effect When Combined With Ribavirin. Gastroenterology, 2016, 150, 82-85.e4.	0.6	175
36	Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology, 1992, 189, 48-58.	1.1	173

#	Article	IF	CITATIONS
37	A Mutation in the Hepatitis E Virus RNA Polymerase Promotes Its Replication and Associates With Ribavirin Treatment Failure in Organ Transplant Recipients. Gastroenterology, 2014, 147, 1008-1011.e7.	0.6	171
38	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	5.8	170
39	Treatment of yellow fever. Antiviral Research, 2008, 78, 116-124.	1.9	167
40	Update on hepatitis E virology: Implications for clinical practice. Journal of Hepatology, 2016, 65, 200-212.	1.8	165
41	Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nature Genetics, 2021, 53, 435-444.	9.4	162
42	Antiviral drug susceptibility of human herpesvirus 8. Antimicrobial Agents and Chemotherapy, 1997, 41, 2754-2756.	1.4	161
43	Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. Journal of Clinical Virology, 2018, 101, 11-17.	1.6	161
44	Calcineurin Inhibitors Stimulate and Mycophenolic Acid Inhibits Replication of Hepatitis E Virus. Gastroenterology, 2014, 146, 1775-1783.	0.6	158
45	Antiviral agents active against human herpesviruses HHV-6, HHV-7 and HHV-8. Reviews in Medical Virology, 2001, 11, 381-395.	3.9	157
46	New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Research, 2008, 78, 103-115.	1.9	156
47	DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A. PLoS ONE, 2010, 5, e13687.	1.1	151
48	A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature, 2021, 590, 320-325.	13.7	148
49	Synthesis and Antiviral Activity Evaluation of Some New Aminoadamantane Derivatives. 2. Journal of Medicinal Chemistry, 1996, 39, 3307-3318.	2.9	144
50	Viral Macro Domains Reverse Protein ADP-Ribosylation. Journal of Virology, 2016, 90, 8478-8486.	1.5	140
51	The Novel Immunosuppressive Agent Mycophenolate Mofetil Markedly Potentiates the Antiherpesvirus Activities of Acyclovir, Ganciclovir, and Penciclovir In Vitro and In Vivo. Antimicrobial Agents and Chemotherapy, 1998, 42, 216-222.	1.4	136
52	Perspectives for the Treatment of Infections with Flaviviridae. Clinical Microbiology Reviews, 2000, 13, 67-82.	5.7	134
53	Combating enterovirus replication: State-of-the-art on antiviral research. Biochemical Pharmacology, 2012, 83, 185-192.	2.0	133
54	Perspectives for the Treatment of Infections with <i>Flaviviridae</i> . Clinical Microbiology Reviews, 2000, 13, 67-82.	5.7	130

#	Article	IF	CITATIONS
55	Spiro[pyrrolidine-2,2′-adamantanes]: synthesis, anti-influenza virus activity and conformational properties. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1699-1703.	1.0	129
56	Treatment of Crimean-Congo hemorrhagic fever. Antiviral Research, 2008, 78, 125-131.	1.9	127
57	Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. Journal of Experimental Medicine, 2019, 216, 2057-2070.	4.2	127
58	Ribavirin Inhibits <i>In Vitro</i> Hepatitis E Virus Replication through Depletion of Cellular GTP Pools and Is Moderately Synergistic with Alpha Interferon. Antimicrobial Agents and Chemotherapy, 2014, 58, 267-273.	1.4	126
59	Inhibition of the replication of the DNA polymerase M550V mutation variant of human hepatitis B virus by adefovir, tenofovir, L-FMAU, DAPD, penciclovir and lobucavir. Journal of Viral Hepatitis, 2000, 7, 161-165.	1.0	125
60	Treatment of hantavirus pulmonary syndrome. Antiviral Research, 2008, 78, 162-169.	1.9	123
61	Favipiravir (T-705) inhibits in vitro norovirus replication. Biochemical and Biophysical Research Communications, 2012, 424, 777-780.	1.0	122
62	Debio 025, a Cyclophilin Binding Molecule, Is Highly Efficient in Clearing Hepatitis C Virus (HCV) Replicon-Containing Cells When Used Alone or in Combination with Specifically Targeted Antiviral Therapy for HCV (STAT-C) Inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53, 967-976.	1.4	121
63	Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society, 2022, 144, 2905-2920.	6.6	118
64	Molecular strategies to inhibit the replication of RNA viruses. Antiviral Research, 2008, 78, 9-25.	1.9	117
65	Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut, 2017, 66, 920-929.	6.1	113
66	Coumarinâ^'Purine Ribofuranoside Conjugates as New Agents against Hepatitis C Virus. Journal of Medicinal Chemistry, 2011, 54, 2114-2126.	2.9	112
67	Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. ACS Chemical Biology, 2017, 12, 2644-2651.	1.6	112
68	A robust human norovirus replication model in zebrafish larvae. PLoS Pathogens, 2019, 15, e1008009.	2.1	112
69	Coxsackievirus mutants that can bypass host factor PI4KIIIÎ ² and the need for high levels of PI4P lipids for replication. Cell Research, 2012, 22, 1576-1592.	5.7	110
70	Heterocyclic rimantadine analogues with antiviral activity. Bioorganic and Medicinal Chemistry, 2006, 14, 3341-3348.	1.4	109
71	Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine for the treatment of lethal vaccinia virus infections in severe combined immune deficiency (SCID) mice. Journal of Medical Virology, 1993, 41, 242-246.	2.5	108
72	Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. Hepatology, 2009, 50, 1638-1645.	3.6	108

#	Article	IF	CITATIONS
73	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	6.0	108
74	Poly(I)-Poly(C 12 U) but Not Ribavirin Prevents Death in a Hamster Model of Nipah Virus Infection. Antimicrobial Agents and Chemotherapy, 2006, 50, 1768-1772.	1.4	107
75	Antiviral Agents Acting as DNA or RNA Chain Terminators. Handbook of Experimental Pharmacology, 2009, , 53-84.	0.9	107
76	Use of the yellow fever virus vaccine strain 17D for the study of strategies for the treatment of yellow fever virus infections. Antiviral Research, 1996, 30, 125-132.	1.9	106
77	Inhibition of Human Immunodeficiency Virus Type 1 Replication in Human Cells by Debio-025, a Novel Cyclophilin Binding Agent. Antimicrobial Agents and Chemotherapy, 2008, 52, 1302-1317.	1.4	106
78	Statins potentiate the <i>in vitro</i> anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology, 2009, 50, 6-16.	3.6	104
79	Extraâ€hepatic replication and infection of hepatitis E virus in neuronalâ€derived cells. Journal of Viral Hepatitis, 2016, 23, 512-521.	1.0	104
80	The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 2022, 198, 105253.	1.9	104
81	Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine, 2021, 68, 103403.	2.7	102
82	Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Current Opinion in Virology, 2011, 1, 590-598.	2.6	101
83	Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacology and Translational Science, 2021, 4, 1096-1110.	2.5	101
84	Inhibition of Urokinase-Type Plasminogen Activator or Matrix Metalloproteinases Prevents Cardiac Injury and Dysfunction During Viral Myocarditis. Circulation, 2006, 114, 565-573.	1.6	100
85	Hepatitis E virus mutations associated with ribavirin treatment failure result in altered viral fitness and ribavirin sensitivity. Journal of Hepatology, 2016, 65, 499-508.	1.8	99
86	A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIÎ ² . Antimicrobial Agents and Chemotherapy, 2013, 57, 4971-4981.	1.4	96
87	Modulation of Fibroblast Growth Factor-2 Receptor Binding, Signaling, and Mitogenic Activity by Heparin-Mimicking Polysulfonated Compounds. Molecular Pharmacology, 1999, 56, 204-213.	1.0	95
88	The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. European Heart Journal, 2015, 36, 2909-2919.	1.0	95
89	Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model. Journal of Infectious Diseases, 2021, 224, 749-753.	1.9	95
90	Selective inhibition of human cytomegalovirus DNA synthesis by (S)-1-(3-Hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] and 9-(1,3-Dihydroxy-2-propoxymethyl)guanine (DHPC). Virology, 1990, 179, 41-50.	1.1	92

#	Article	IF	CITATIONS
91	3C Protease of Enterovirus 68: Structure-Based Design of Michael Acceptor Inhibitors and Their Broad-Spectrum Antiviral Effects against Picornaviruses. Journal of Virology, 2013, 87, 4339-4351.	1.5	91
92	The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine, 2021, 72, 103595.	2.7	91
93	Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. Journal of Hepatology, 2012, 57, 246-251.	1.8	90
94	A pan-serotype dengue virusÂinhibitor targeting the NS3–NS4BÂinteraction. Nature, 2021, 598, 504-509.	13.7	90
95	Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase. Antimicrobial Agents and Chemotherapy, 2011, 55, 4196-4203.	1.4	88
96	The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Scientific Reports, 2016, 6, 31819.	1.6	88
97	The Crystal Structure of Coxsackievirus B3 RNA-Dependent RNA Polymerase in Complex with Its Protein Primer VPg Confirms the Existence of a Second VPg Binding Site on <i>Picornaviridae</i> Polymerases. Journal of Virology, 2008, 82, 9577-9590.	1.5	87
98	Prostratin and 12- <i>O</i> -Tetradecanoylphorbol 13-Acetate Are Potent and Selective Inhibitors of Chikungunya Virus Replication. Journal of Natural Products, 2012, 75, 2183-2187.	1.5	87
99	Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 2013, 98, 12-18.	1.9	87
100	Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Research, 2013, 99, 165-171.	1.9	86
101	Flaviviral NS4b, chameleon and jackâ€inâ€theâ€box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Reviews in Medical Virology, 2015, 25, 205-223.	3.9	86
102	The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern. Nature Communications, 2022, 13, 719.	5.8	86
103	Sulphated Polymers are Potent and Selective Inhibitors of Various Enveloped Viruses, Including Herpes Simplex Virus, Cytomegalovirus, Vesicular Stomatitis Virus, Respiratory Syncytial Virus, and Toga-, Arena- and Retroviruses. Antiviral Chemistry and Chemotherapy, 1990, 1, 233-240.	0.3	85
104	The Viral Polymerase Inhibitor 2′- <i>C</i> -Methylcytidine Inhibits Norwalk Virus Replication and Protects against Norovirus-Induced Diarrhea and Mortality in a Mouse Model. Journal of Virology, 2013, 87, 11798-11805.	1.5	85
105	ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.	6.0	85
106	Towards antivirals against chikungunya virus. Antiviral Research, 2015, 121, 59-68.	1.9	84
107	Oligonucleotide antiviral therapeutics: Antisense and RNA interference for highly pathogenic RNA viruses. Antiviral Research, 2008, 78, 26-36.	1.9	83
108	Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut, 2015, 64, 483-494.	6.1	83

#	Article	IF	CITATIONS
109	Antiviral activity of a sulphated polysaccharide from the red seaweed nothogenia fastigiata. Biochemical Pharmacology, 1994, 47, 2187-2192.	2.0	81
110	Selective Serotonin Reuptake Inhibitor Fluoxetine Inhibits Replication of Human Enteroviruses B and D by Targeting Viral Protein 2C. Antimicrobial Agents and Chemotherapy, 2013, 57, 1952-1956.	1.4	81
111	Selective inhibition of hepatitis B virus replication by RNA interference. Biochemical and Biophysical Research Communications, 2003, 309, 482-484.	1.0	80
112	The Anti-Yellow Fever Virus Activity of Ribavirin Is Independent of Error-Prone Replication. Molecular Pharmacology, 2006, 69, 1461-1467.	1.0	80
113	Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nature Communications, 2021, 12, 916.	5.8	80
114	Antiviral Activity of Triazine Analogues of 1-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]cytosine (Cidofovir) and Related Compounds. Journal of Medicinal Chemistry, 2007, 50, 1069-1077.	2.9	79
115	A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase. Journal of Virology, 2006, 80, 149-160.	1.5	78
116	Antimicrobial, Anthelmintic, and Antiviral Activity of Plants Traditionally Used for Treating Infectious Disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in Pharmacology, 2017, 8, 658.	1.6	78
117	Antiviral Activity of Bay 41-4109 on Hepatitis B Virus in Humanized Alb-uPA/SCID Mice. PLoS ONE, 2011, 6, e25096.	1.1	78
118	Animal models of highly pathogenic RNA viral infections: Hemorrhagic fever viruses. Antiviral Research, 2008, 78, 79-90.	1.9	77
119	Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016, 12, 156-160.	2.7	77
120	Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. Journal of Physical Chemistry Letters, 2021, 12, 1793-1802.	2.1	77
121	Picornavirus non-structural proteins as targets for new anti-virals with broad activity. Antiviral Research, 2011, 89, 204-218.	1.9	76
122	Treatment of Marburg and Ebola hemorrhagic fevers: A strategy for testing new drugs and vaccines under outbreak conditions. Antiviral Research, 2008, 78, 150-161.	1.9	75
123	The main Hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication. Antiviral Research, 2011, 92, 271-276.	1.9	75
124	Therapeutic potential of nucleoside/nucleotide analogues against poxvirus infections. Reviews in Medical Virology, 2004, 14, 289-300.	3.9	74
125	A Derivate of the Antibiotic Doxorubicin Is a Selective Inhibitor of Dengue and Yellow Fever Virus Replication <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5269-5280.	1.4	72
126	Phosphatidylinositol 4-Kinase III Beta Is Essential for Replication of Human Rhinovirus and Its Inhibition Causes a Lethal Phenotype <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2013, 57, 3358-3368.	1.4	72

#	Article	IF	CITATIONS
127	Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents1. Journal of Medicinal Chemistry, 2006, 49, 2621-2627.	2.9	71
128	Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: From anti-pestivirus to anti-hepatitis C virus activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 390-393.	1.0	71
129	The Thiazolobenzimidazole TBZE-029 Inhibits Enterovirus Replication by Targeting a Short Region Immediately Downstream from Motif C in the Nonstructural Protein 2C. Journal of Virology, 2008, 82, 4720-4730.	1.5	71
130	A novel kindred with inherited STAT2 deficiency and severe viral illness. Journal of Allergy and Clinical Immunology, 2017, 139, 1995-1997.e9.	1.5	71
131	Mycophenolic acid, an immunosuppressive agent, inhibits HBV replicationin vitro. Journal of Viral Hepatitis, 1999, 6, 229-236.	1.0	70
132	Novel 1,2,4-triazole and imidazole derivatives of l-ascorbic and imino-ascorbic acid: Synthesis, anti-HCV and antitumor activity evaluations. Bioorganic and Medicinal Chemistry, 2012, 20, 3675-3685.	1.4	70
133	Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2923-2926.	1.0	70
134	Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. Journal of General Virology, 2002, 83, 2443-2454.	1.3	69
135	Evaluation of Hexadecyloxypropyl-9- <i>R</i> -[2-(Phosphonomethoxy)Propyl]- Adenine, CMX157, as a Potential Treatment for Human Immunodeficiency Virus Type 1 and Hepatitis B Virus Infections. Antimicrobial Agents and Chemotherapy, 2007, 51, 3505-3509.	1.4	68
136	Mutations in the Nonstructural Protein 3A Confer Resistance to the Novel Enterovirus Replication Inhibitor TTP-8307. Antimicrobial Agents and Chemotherapy, 2009, 53, 1850-1857.	1.4	68
137	Tracking the Evolution of Multiple <i>In Vitro</i> Hepatitis C Virus Replicon Variants under Protease Inhibitor Selection Pressure by 454 Deep Sequencing. Journal of Virology, 2010, 84, 11124-11133.	1.5	68
138	Particular characteristics of the anti-human cytomegalovirus activity of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC) in vitro. Antiviral Research, 1991, 16, 41-52.	1.9	67
139	Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Reviews in Medical Virology, 2008, 18, 19-34.	3.9	67
140	Jatrophane Diterpenes as Inhibitors of Chikungunya Virus Replication: Structure–Activity Relationship and Discovery of a Potent Lead. Journal of Natural Products, 2014, 77, 1505-1512.	1.5	67
141	7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS Letters, 1998, 438, 91-95.	1.3	66
142	ANTIVIRAL POTENTIAL OF A NEW GENERATION OF ACYCLIC NUCLEOSIDE PHOSPHONATES, THE 6-[2-(PHOSPHONOMETHOXY)ALKOXY]-2,4-DIAMINOPYRIMIDINES. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 331-341.	0.4	66
143	In vitro susceptibility of six isolates of equine herpesvirus 1 to acyclovir, ganciclovir, cidofovir, adefovir, adefovir, PMEDAP and foscarnet. Veterinary Microbiology, 2007, 122, 43-51.	0.8	66
144	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	3.6	66

#	Article	IF	CITATIONS
145	Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochemical Pharmacology, 2017, 127, 1-12.	2.0	66
146	Potential Use of Antiviral Agents in Polio Eradication. Emerging Infectious Diseases, 2008, 14, 545-551.	2.0	65
147	Efficacy of Cidofovir in a Murine Model of Disseminated Progressive Vaccinia. Antimicrobial Agents and Chemotherapy, 2004, 48, 2267-2273.	1.4	64
148	Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochemical and Biophysical Research Communications, 2006, 348, 139-144.	1.0	64
149	Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology, 2009, 387, 67-75.	1.1	64
150	Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine for the treatment of murine cytomegalovirus infection in severe combined immunodeficiency mice. Journal of Medical Virology, 1992, 37, 67-71.	2.5	62
151	Lamivudine, adefovir and tenofovir exhibit long-lasting anti-hepatitis B virus activity in cell culture. Journal of Viral Hepatitis, 2000, 7, 79-83.	1.0	62
152	Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication. Journal of Natural Products, 2015, 78, 1277-1283.	1.5	62
153	Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase. Journal of Virology, 2017, 91, .	1.5	62
154	Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. European Journal of Medicinal Chemistry, 2010, 45, 2044-2047.	2.6	61
155	The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochemical Pharmacology, 2012, 84, 1400-1408.	2.0	61
156	Coumarins hinged directly on benzimidazoles and their ribofuranosides to inhibit hepatitis C virus. European Journal of Medicinal Chemistry, 2013, 63, 290-298.	2.6	61
157	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	2.1	61
158	Novel 3-(2-Adamantyl)pyrrolidines with potent activity against influenza A virus—identification of aminoadamantane derivatives bearing two pharmacophoric amine groups. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2137-2142.	1.0	60
159	ACYCLIC/CARBOCYCLIC GUANOSINE ANALOGUES AS ANTI-HERPESVIRUS AGENTS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 271-285.	0.4	60
160	A case for developing antiviral drugs against polio. Antiviral Research, 2008, 79, 179-187.	1.9	60
161	Identification of [1,2,3]Triazolo[4,5- <i>d</i>]pyrimidin-7(6 <i>H</i>)-ones as Novel Inhibitors of Chikungunya Virus Replication. Journal of Medicinal Chemistry, 2014, 57, 4000-4008.	2.9	60
162	The Capsid Binder Vapendavir and the Novel Protease Inhibitor SG85 Inhibit Enterovirus 71 Replication. Antimicrobial Agents and Chemotherapy, 2014, 58, 6990-6992.	1.4	60

#	Article	IF	CITATIONS
163	Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology, 2010, 139, 1365-1374.e2.	0.6	59
164	Inhibition of norovirus replication by the nucleoside analogue 2′-C-methylcytidine. Biochemical and Biophysical Research Communications, 2012, 427, 796-800.	1.0	59
165	Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Research, 2015, 117, 110-114.	1.9	59
166	Increased ILâ€10â€producing regulatory T cells are characteristic of severe cases of COVIDâ€19. Clinical and Translational Immunology, 2020, 9, e1204.	1.7	59
167	Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention. Trends in Pharmacological Sciences, 2007, 28, 280-285.	4.0	57
168	Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Research, 2010, 87, 149-161.	1.9	57
169	Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. European Journal of Medicinal Chemistry, 2014, 87, 529-539.	2.6	57
170	Broad Antiviral Activity of Carbohydrate-Binding Agents against the Four Serotypes of Dengue Virus in Monocyte-Derived Dendritic Cells. PLoS ONE, 2011, 6, e21658.	1.1	57
171	Therapy and short-term prophylaxis of poxvirus infections: historical background and perspectives. Antiviral Research, 2003, 57, 25-33.	1.9	56
172	Ribavirin Antagonizes the In Vitro Anti-Hepatitis C Virus Activity of 2′- C -Methylcytidine, the Active Component of Valopicitabine. Antimicrobial Agents and Chemotherapy, 2006, 50, 3444-3446.	1.4	56
173	Discovery of Novel Arylethynyltriazole Ribonucleosides with Selective and Effective Antiviral and Antiproliferative Activity. Journal of Medicinal Chemistry, 2009, 52, 1144-1155.	2.9	56
174	Antiviral Treatment of Chronic Hepatitis B Virus (HBV) Infections. Viruses, 2010, 2, 1279-1305.	1.5	56
175	The future of antivirals. Current Opinion in Infectious Diseases, 2015, 28, 596-602.	1.3	56
176	Interferons, Interferon Inducers, and Interferon-Ribavirin in Treatment of Flavivirus-Induced Encephalitis in Mice. Antimicrobial Agents and Chemotherapy, 2003, 47, 777-782.	1.4	55
177	The Interferon Inducer Ampligen [Poly(I)-Poly(C 12 U)] Markedly Protects Mice against Coxsackie B3 Virus-Induced Myocarditis. Antimicrobial Agents and Chemotherapy, 2004, 48, 267-274.	1.4	55
178	Antiviral strategies to control calicivirus infections. Antiviral Research, 2010, 87, 162-178.	1.9	55
179	Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Research, 2011, 91, 89-93.	1.9	55
180	The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family. PLoS Pathogens, 2015, 11, e1004733.	2.1	55

#	Article	IF	CITATIONS
181	Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 3354-3365.	2.9	54
182	Comparative Study of the Genetic Barriers and Pathways towards Resistance of Selective Inhibitors of Hepatitis C Virus Replication. Antimicrobial Agents and Chemotherapy, 2011, 55, 4103-4113.	1.4	54
183	Antiviral Activity of Broad-Spectrum and Enterovirus-Specific Inhibitors against Clinical Isolates of Enterovirus D68. Antimicrobial Agents and Chemotherapy, 2015, 59, 7782-7785.	1.4	54
184	Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antiviral Research, 2016, 132, 46-49.	1.9	54
185	A chemiluminescence detection method of hantaviral antigens in neutralisation assays and inhibitor studies. Journal of Virological Methods, 2001, 96, 17-23.	1.0	53
186	Preclinical Characterization of Naturally Occurring Polyketide Cyclophilin Inhibitors from the Sanglifehrin Family. Antimicrobial Agents and Chemotherapy, 2011, 55, 1975-1981.	1.4	53
187	2′-C-Methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Research, 2007, 73, 161-168.	1.9	52
188	Discovery of Multitarget Antivirals Acting on Both the Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases. Journal of Medicinal Chemistry, 2015, 58, 4964-4975.	2.9	52
189	Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Journal of Medicinal Chemistry, 2022, 65, 2794-2808.	2.9	52
190	Phosphorylation of aciclovir, ganciclovir, penciclovir and S2242 by the cytomegalovirus UL97 protein: a quantitative analysis using recombinant vaccinia viruses. Antiviral Research, 1997, 36, 35-42.	1.9	51
191	Hydrogels containing monocaprin prevent intravaginal and intracutaneous infections with HSV-2 in mice: Impact on the search for vaginal microbicides. , 2000, 61, 107-110.		51
192	Hepatitis B virus replication causes oxidative stress in HepAD38 liver cells. Molecular and Cellular Biochemistry, 2006, 290, 79-85.	1.4	51
193	Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3321-3327.	1.0	51
194	Artemisinin Analogues as Potent Inhibitors of In Vitro Hepatitis C Virus Replication. PLoS ONE, 2013, 8, e81783.	1.1	51
195	Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses. Journal of Virology, 2015, 89, 6352-6363.	1.5	51
196	Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. Journal of Hepatology, 2016, 64, 565-573.	1.8	51
197	Efficacy of 2-Amino-7-(1,3-Dihydroxy-2-Propoxymethyl)Purine for Treatment of Vaccinia Virus (Orthopoxvirus) Infections in Mice. Antimicrobial Agents and Chemotherapy, 2001, 45, 84-87.	1.4	50
198	Heterocyclic rimantadine analogues with antiviral activity. Bioorganic and Medicinal Chemistry, 2003, 11, 5485-5492.	1.4	50

#	Article	IF	CITATIONS
199	Selective inhibitors of hepatitis C virus replication. Antiviral Research, 2006, 71, 363-371.	1.9	50
200	Ester Prodrugs of Cyclic 1-(<i>S</i>)- [3-Hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: Synthesis and Antiviral Activity. Journal of Medicinal Chemistry, 2007, 50, 5765-5772.	2.9	50
201	Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fìtoterapìâ, 2014, 97, 87-91.	1.1	50
202	Broad-Spectrum Antiviral Activity and Mechanism of Antiviral Action of the Fluoroquinolone Derivative K-12. Antiviral Chemistry and Chemotherapy, 1998, 9, 403-411.	0.3	49
203	In Vitro and In Vivo Inhibition of Murine Gamma Herpesvirus 68 Replication by Selected Antiviral Agents. Antimicrobial Agents and Chemotherapy, 1998, 42, 170-172.	1.4	49
204	Synthesis, in Vitro Antiviral Evaluation, and Stability Studies of Novel α-Borano-Nucleotide Analogues of 9-[2-(Phosphonomethoxy)ethyl]adenine and (R)-9-[2-(Phosphonomethoxy)propyl]adenine. Journal of Medicinal Chemistry, 2006, 49, 7799-7806.	2.9	49
205	Norovirus: Targets and tools in antiviral drug discovery. Biochemical Pharmacology, 2014, 91, 1-11.	2.0	49
206	Towards antiviral therapies for treating dengue virus infections. Current Opinion in Pharmacology, 2016, 30, 1-7.	1.7	49
207	Differential antiviral activity of derivatized dextrans. Biochemical Pharmacology, 1995, 50, 743-751.	2.0	48
208	Polyanion Inhibitors of HIV and Other Viruses. 7. Polyanionic Compounds and Polyzwitterionic Compounds Derived from Cyclodextrins as Inhibitors of HIV Transmission. Journal of Medicinal Chemistry, 1998, 41, 4927-4932.	2.9	48
209	A Novel Model for the Study of the Therapy of Flavivirus Infections Using the Modoc Virus. Virology, 2001, 279, 27-37.	1.1	48
210	Novel Acyclic Nucleoside Phosphonate Analogues with Potent Anti-Hepatitis B Virus Activities. Antimicrobial Agents and Chemotherapy, 2005, 49, 1177-1180.	1.4	48
211	Does antiviral therapy have a role in the control of Japanese encephalitis?. Antiviral Research, 2008, 78, 140-149.	1.9	48
212	Straightforward synthesis of triazoloacyclonucleotide phosphonates as potential HCV inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7365-7368.	1.0	47
213	A prospect on the use of antiviral drugs to control local outbreaks of COVID-19. BMC Medicine, 2020, 18, 191.	2.3	47
214	A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents. Antiviral Research, 2021, 192, 105122.	1.9	47
215	The N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine is a potent and selective inhibitor of herpesvirus replication. Antimicrobial Agents and Chemotherapy, 1994, 38, 2710-2716.	1.4	46
216	Inhibitory Effects of Novel Nucleoside and Nucleotide Analogues on Epstein—Barr Virus Replication. Antiviral Chemistry and Chemotherapy, 1998, 9, 275-282.	0.3	46

#	Article	IF	CITATIONS
217	2-chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide (CMV423), a new lead compound for the treatment of human cytomegalovirus infections. Antiviral Research, 2002, 55, 413-424.	1.9	46
218	Complete Genome Sequence, Taxonomic Assignment, and Comparative Analysis of the Untranslated Regions of the Modoc Virus, a Flavivirus with No Known Vector. Virology, 2002, 293, 125-140.	1.1	46
219	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
220	Effect of 5-lodo-2′-Deoxyuridine on Vaccinia Virus (Orthopoxvirus) Infections in Mice. Antimicrobial Agents and Chemotherapy, 2002, 46, 2842-2847.	1.4	45
221	Towards the design of combination therapy for the treatment of enterovirus infections. Antiviral Research, 2011, 90, 213-217.	1.9	45
222	The Enterovirus Protease Inhibitor Rupintrivir Exerts Cross-Genotypic Anti-Norovirus Activity and Clears Cells from the Norovirus Replicon. Antimicrobial Agents and Chemotherapy, 2014, 58, 4675-4681.	1.4	45
223	Substituted imidazopyridines as potent inhibitors of HCV replication. Journal of Hepatology, 2009, 50, 999-1009.	1.8	44
224	Trigocherrierin A, a Potent Inhibitor of Chikungunya Virus Replication. Molecules, 2014, 19, 3617-3627.	1.7	44
225	Antiviral activity of [1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Research, 2017, 144, 216-222.	1.9	44
226	Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-14.	0.5	44
227	In Vitro Activity of 2,4-Diamino-6-[2-(Phosphonomethoxy)Ethoxy]-Pyrimidine against Multidrug-Resistant Hepatitis B Virus Mutants. Antimicrobial Agents and Chemotherapy, 2007, 51, 2240-2243.	1.4	43
228	The Imidazopyrrolopyridine Analogue AG110 Is a Novel, Highly Selective Inhibitor of Pestiviruses That Targets the Viral RNA-Dependent RNA Polymerase at a Hot Spot for Inhibition of Viral Replication. Journal of Virology, 2007, 81, 11046-11053.	1.5	43
229	Comparative In Vitro Anti-Hepatitis C Virus Activities of a Selected Series of Polymerase, Protease, and Helicase Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 3433-3437.	1.4	43
230	The phosphoramidate ProTide approach greatly enhances the activity of β-2′-C-methylguanosine against hepatitis C virus. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4316-4320.	1.0	43
231	Differential Effects of the Putative GBF1 Inhibitors Golgicide A and AG1478 on Enterovirus Replication. Journal of Virology, 2010, 84, 7535-7542.	1.5	43
232	An Analogue of the Antibiotic Teicoplanin Prevents Flavivirus Entry In Vitro. PLoS ONE, 2012, 7, e37244.	1.1	43
233	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	2.9	43
234	Structure–activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorganic and Medicinal Chemistry, 2014, 22, 6014-6025.	1.4	43

#	Article	IF	CITATIONS
235	Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Research, 2017, 140, 37-44.	1.9	43
236	Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8390-8401.	2.9	43
237	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	5.8	43
238	In vitro and in vivo inhibition of ortho- and paramyxovirus infections by a new class of sulfonic acid polymers interacting with virus-cell binding and/or fusion. Antimicrobial Agents and Chemotherapy, 1994, 38, 256-259.	1.4	42
239	Mycophenolate mofetil strongly potentiates the anti-herpesvirus activity of acyclovir. Antiviral Research, 1998, 40, 53-56.	1.9	42
240	Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock. Antiviral Research, 2008, 78, 170-178.	1.9	42
241	3-Biphenylimidazo[1,2-a]pyridines or [1,2-b]pyridazines and analogues, novel Flaviviridae inhibitors. European Journal of Medicinal Chemistry, 2013, 64, 448-463.	2.6	42
242	Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host. Nature Communications, 2021, 12, 6243.	5.8	42
243	The antiviral agent cidofovir [(S)-1-(3-hydroxy-2-phosphonyl-methoxypropyl)cytosine] has pronounced activity against nasopharyngeal carcinoma grown in nude mice. Cancer Research, 1998, 58, 384-8.	0.4	42
244	Inhibitory activity of S-adenosylhomocysteine hydrolase inhibitors against human cytomegalovirus replication. Antiviral Research, 1993, 21, 197-216.	1.9	41
245	Antitumor Potential of Acyclic Nucleoside Phosphonates. Nucleosides & Nucleotides, 1999, 18, 759-771.	0.5	41
246	Evaluation of antiviral activity against human herpesvirus 8 (HHV-8) and Epstein–Barr virus (EBV) by a quantitative real-time PCR assay. Antiviral Research, 2004, 62, 121-123.	1.9	41
247	Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2935-2937.	1.0	41
248	Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorganic and Medicinal Chemistry, 2012, 20, 866-876.	1.4	41
249	Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. Antiviral Research, 2017, 145, 82-86.	1.9	41
250	A yellow fever–Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. Npj Vaccines, 2018, 3, 56.	2.9	41
251	CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Experimental Cell Research, 2018, 372, 168-177.	1.2	41
252	The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function. PLoS ONE, 2012, 7, e39163.	1.1	41

#	Article	IF	CITATIONS
253	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
254	Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)-cytosine and 9-(1,3-dihydroxy-2-propoxymethyl)-guanine in the treatment of intracerebral murine cytomegalovirus infections in immunocompetent and immunodeficient mice. European Journal of Clinical Microbiology and Infectious Diseases, 1993, 12, 269-279.	1.3	40
255	Are the 2-Isomers of the Drug Rimantadine Active Anti-Influenza a Agents?. Antiviral Chemistry and Chemotherapy, 2003, 14, 153-164.	0.3	40
256	Highly pathogenic RNA viral infections: Challenges for antiviral research. Antiviral Research, 2008, 78, 1-8.	1.9	40
257	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	2.9	40
258	Hepatitis E virus replication and interferon responses in human placental cells. Hepatology Communications, 2018, 2, 173-187.	2.0	40
259	Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. Journal of General Virology, 2002, 83, 1875-1885.	1.3	40
260	Anti-enterovirus activity and structure–activity relationship of a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-a]benzimidazoles. Biochemical and Biophysical Research Communications, 2007, 353, 628-632.	1.0	39
261	Antiviral strategies for hepatitis E virus. Antiviral Research, 2014, 102, 106-118.	1.9	39
262	Antiviral Activity of Flexibilane and Tigliane Diterpenoids from <i>Stillingia lineata</i> . Journal of Natural Products, 2015, 78, 1119-1128.	1.5	39
263	Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses <i>In Vitro</i> and against Human Metapneumovirus in Hamsters. Antimicrobial Agents and Chemotherapy, 2016, 60, 4620-4629.	1.4	39
264	Chikungunya virus infections: time to act, time to treat. Current Opinion in Virology, 2017, 24, 25-30.	2.6	39
265	Medical treatment options for COVID-19. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 209-214.	0.4	39
266	A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Reports, 2021, 37, 109814.	2.9	39
267	Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2016, 97, 2799-2808.	1.3	39
268	Mechanism of action of acyclic nucleoside phosphonates against herpes virus replication. Biochemical Pharmacology, 1994, 47, 39-41.	2.0	38
269	Suboptimal Response to Adefovir Dipivoxil Therapy for Chronic Hepatitis B in Nucleoside-Naive Patients is not due to Pre-Existing Drug-Resistant Mutants. Antiviral Therapy, 2008, 13, 381-388.	0.6	38
270	Intervention strategies for emerging viruses: use of antivirals. Current Opinion in Virology, 2013, 3, 217-224.	2.6	37

#	Article	IF	CITATIONS
271	Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis. PLoS Pathogens, 2014, 10, e1004039.	2.1	37
272	LC-MS2-Based dereplication of Euphorbia extracts with anti-Chikungunya virus activity. Fìtoterapìâ, 2015, 105, 202-209.	1.1	37
273	Isolation of Premyrsinane, Myrsinane, and Tigliane Diterpenoids from <i>Euphorbia pithyusa</i> Using a Chikungunya Virus Cell-Based Assay and Analogue Annotation by Molecular Networking. Journal of Natural Products, 2017, 80, 2051-2059.	1.5	37
274	Ribavirin and mycophenolic acid potentiate the activity of guanine- and diaminopurine-based nucleoside analogues against hepatitis B virus. Antiviral Research, 2000, 48, 117-124.	1.9	36
275	Influence of an additional 2-amino substituent of the 1-aminoethyl pharmacophore group on the potency of rimantadine against influenza virus A. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 692-696.	1.0	36
276	Identification of a Series of Compounds with Potent Antiviral Activity for the Treatment of Enterovirus Infections. ACS Medicinal Chemistry Letters, 2013, 4, 585-589.	1.3	36
277	Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. European Journal of Medicinal Chemistry, 2015, 92, 656-671.	2.6	36
278	A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biology, 2019, 17, e3000281.	2.6	36
279	Antiviral Therapy for Hepatitis C Virus: Beyond the Standard of Care. Viruses, 2010, 2, 826-866.	1.5	35
280	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	2.9	35
281	Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antiviral Research, 2015, 118, 103-109.	1.9	35
282	Intracellular Metabolism of the N7-Substituted Acyclic Nucleoside Analog 2-Amino-7-(1,3-dihydroxy-2-propoxymethyl)purine, a Potent Inhibitor of Herpesvirus Replication. Molecular Pharmacology, 1998, 53, 157-165.	1.0	34
283	Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1747-1752.	1.0	34
284	Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. European Journal of Medicinal Chemistry, 2016, 121, 158-168.	2.6	34
285	Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorganic and Medicinal Chemistry, 2017, 25, 327-337.	1.4	34
286	Poly(Hydroxy)Carboxylates as Selective Inhibitors of Cytomegalovirus and Herpes Simplex Virus Replication. Antiviral Chemistry and Chemotherapy, 1992, 3, 215-222.	0.3	33
287	Synthesis and Antiviral Evaluation of Cis-Substituted Cyclohexenyl and Cyclohexanyl Nucleosides. Journal of Medicinal Chemistry, 2005, 48, 450-456.	2.9	33
288	Assessing medicinal plants traditionally used in the Chirang Reserve Forest, Northeast India for antimicrobial activity. Journal of Ethnopharmacology, 2018, 225, 220-233.	2.0	33

#	Article	IF	CITATIONS
289	Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry. Antiviral Research, 2020, 182, 104924.	1.9	33
290	A novel animal model for hemangiomas: inhibition of hemangioma development by the angiogenesis inhibitor TNP-470. Cancer Research, 1999, 59, 2376-83.	0.4	33
291	Detection of immediate early, early and late antigens of human cytomegalovirus by flow cytometry. Journal of Virological Methods, 1989, 26, 247-254.	1.0	32
292	Efficacy of oral 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) in the treatment of retrovirus and cytomegalovirus infections in mice. Journal of Medical Virology, 1993, 39, 167-172.	2.5	32
293	In vivo antiherpesvirus activity of N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine. Antimicrobial Agents and Chemotherapy, 1995, 39, 56-60.	1.4	32
294	Growth kinetics of SARS-coronavirus in Vero E6 cells. Biochemical and Biophysical Research Communications, 2005, 329, 1147-1151.	1.0	32
295	Bioengineering and Semisynthesis of an Optimized Cyclophilin Inhibitor for Treatment of Chronic Viral Infection. Chemistry and Biology, 2015, 22, 285-292.	6.2	32
296	Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. International Journal of Antimicrobial Agents, 2018, 52, 622-628.	1.1	32
297	The Antiherpesvirus Activity of H2G [(<i>R</i>)-9-[4-Hydroxy-2-(Hydroxymethyl)Butyl]Guanine] Is Markedly Enhanced by the Novel Immunosuppressive Agent Mycophenolate Mofetil. Antimicrobial Agents and Chemotherapy, 1998, 42, 3285-3289.	1.4	31
298	Design, synthesis, and biological evaluation of novel coxsackievirus B3 inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 4374-4384.	1.4	31
299	Molecular Biology and Inhibitors of Hepatitis A Virus. Medicinal Research Reviews, 2014, 34, 895-917.	5.0	31
300	Prophylactic treatment with the nucleoside analogue 2'-C-methylcytidine completely prevents transmission of norovirus. Journal of Antimicrobial Chemotherapy, 2015, 70, 190-197.	1.3	31
301	The sulfonic acid polymers PAMPS [poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] and related analogues are highly potent inhibitors of angiogenesis. Oncology Research, 1997, 9, 173-81.	0.6	31
302	Antiviral activity of anti-cytomegalovirus agents (HPMPC, HPMPA) assessed by a flow cytometric method and DNA hybridization technique. Antiviral Research, 1991, 16, 1-9.	1.9	30
303	Synthesis of Ester Prodrugs of 9-(<i>S</i>)-[3-Hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) as Anti-Poxvirus Agents. Journal of Medicinal Chemistry, 2010, 53, 6825-6837.	2.9	30
304	A novel method for high-throughput screening to quantify antiviral activity against viruses that induce limited CPE. Journal of Virological Methods, 2012, 183, 176-179.	1.0	30
305	Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection. Antiviral Research, 2018, 149, 113-117.	1.9	30
306	A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. MBio, 2020, 11, .	1.8	30

#	Article	IF	CITATIONS
307	ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits inÂvivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, 2021, 555, 134-139.	1.0	30
308	In vitro activity of itraconazole against SARS oVâ€2. Journal of Medical Virology, 2021, 93, 4454-4460.	2.5	30
309	Clinical effect of cidofovir and a diet supplemented with Spirulina platensis in white spot syndrome virus (WSSV) infected specific pathogen-free Litopenaeus vannamei juveniles. Aquaculture, 2006, 255, 600-605.	1.7	29
310	Synthesis of 5-aryltriazole ribonucleosides via Suzuki coupling and promoted by microwave irradiation. Tetrahedron Letters, 2006, 47, 6727-6731.	0.7	29
311	Application of the phosphoramidate ProTide approach to the antiviral drug ribavirin. Bioorganic and Medicinal Chemistry, 2010, 18, 2748-2755.	1.4	29
312	Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Research, 2012, 96, 280-287.	1.9	29
313	Modification of the length and structure of the linker of N6-benzyladenosine modulates its selective antiviral activity against enterovirus 71. European Journal of Medicinal Chemistry, 2016, 111, 84-94.	2.6	29
314	Use of Cotton Rats to Evaluate the Efficacy of Antivirals in Treatment of Measles Virus Infections. Antimicrobial Agents and Chemotherapy, 2000, 44, 1146-1152.	1.4	28
315	Substituted 5-benzyl-2-phenyl-5H-imidazo[4,5-c]pyridines: A new class of pestivirus inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5345-5349.	1.0	28
316	Comparisons of the influenza virus A M2 channel binding affinities, anti-influenza virus potencies and NMDA antagonistic activities of 2-alkyl-2-aminoadamantanes and analogues. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6156-6160.	1.0	28
317	9-Arylpurines as a Novel Class of Enterovirus Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 316-324.	2.9	28
318	In search of flavivirus inhibitors: Evaluation of different tritylated nucleoside analogues. European Journal of Medicinal Chemistry, 2013, 65, 249-255.	2.6	28
319	3′,5′Di-O-trityluridine inhibits in vitro flavivirus replication. Antiviral Research, 2013, 98, 242-247.	1.9	28
320	In vitro characterisation of a pleconaril/pirodavir-like compound with potent activity against rhinoviruses. Virology Journal, 2015, 12, 106.	1.4	28
321	Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway. Journal of Natural Products, 2016, 79, 680-684.	1.5	28
322	Antiviral Compounds from <i>Codiaeum peltatum</i> Targeted by a Multi-informative Molecular Networks Approach. Journal of Natural Products, 2019, 82, 330-340.	1.5	28
323	Potent inhibition of hemangiosarcoma development in mice by cidofovir. International Journal of Cancer, 2001, 92, 161-167.	2.3	27
324	Mycophenolate mofetil inhibits the development of Coxsackie B3-virus-induced myocarditis in mice. BMC Microbiology, 2003, 3, 25.	1.3	27

#	Article	IF	CITATIONS
325	Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. Current Topics in Microbiology and Immunology, 2013, 369, 289-320.	0.7	27
326	A novel benzonitrile analogue inhibits rhinovirus replication. Journal of Antimicrobial Chemotherapy, 2014, 69, 2723-2732.	1.3	27
327	Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 139-142.	1.0	27
328	Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. European Journal of Medicinal Chemistry, 2017, 126, 101-109.	2.6	27
329	Favipiravir inhibits in vitro Usutu virus replication and delays disease progression in an infection model in mice. Antiviral Research, 2018, 160, 137-142.	1.9	27
330	GloPID-R report on Chikungunya, O'nyong-nyong and Mayaro virus, part I: Biological diagnostics. Antiviral Research, 2019, 166, 66-81.	1.9	27
331	Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Research, 2021, 193, 105127.	1.9	27
332	Imidazo[4,5-c]pyridines inhibit the in vitro replication of the classical swine fever virus and target the viral polymerase. Antiviral Research, 2008, 77, 114-119.	1.9	26
333	The VIZIER project: Preparedness against pathogenic RNA viruses. Antiviral Research, 2008, 78, 37-46.	1.9	26
334	A pyrazolotriazolopyrimidinamine inhibitor of bovine viral diarrhea virus replication that targets the viral RNA-dependent RNA polymerase. Antiviral Research, 2009, 82, 141-147.	1.9	26
335	Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. European Journal of Medicinal Chemistry, 2016, 123, 31-47.	2.6	26
336	Structure-Based Drug Design of Potent Pyrazole Derivatives against Rhinovirus Replication. Journal of Medicinal Chemistry, 2018, 61, 8402-8416.	2.9	26
337	Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathogens, 2019, 15, e1007760.	2.1	26
338	Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis. Journal of General Virology, 2002, 83, 1887-1896.	1.3	26
339	The acyclic nucleoside phosphonate analogues, adefovir, tenofovir and PMEDAP, efficiently eliminate banana streak virus from banana (Musa spp.). Antiviral Research, 2003, 59, 121-126.	1.9	25
340	Exchanging the Yellow Fever Virus Envelope Proteins with Modoc Virus prM and E Proteins Results in a Chimeric Virus That Is Neuroinvasive in SCID Mice. Journal of Virology, 2004, 78, 7418-7426.	1.5	25
341	In search of Flavivirus inhibitors part 2: Tritylated, diphenylmethylated and other alkylated nucleoside analogues. European Journal of Medicinal Chemistry, 2014, 76, 98-109.	2.6	25
342	New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. European Journal of Medicinal Chemistry, 2015, 90, 497-506.	2.6	25

#	Article	IF	CITATIONS
343	ZikaPLAN: Zika Preparedness Latin American Network. Global Health Action, 2017, 10, 1398485.	0.7	25
344	HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochemical Pharmacology, 2018, 155, 305-315.	2.0	25
345	Reverse engineering synthetic antiviral amyloids. Nature Communications, 2020, 11, 2832.	5.8	25
346	Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Science Translational Medicine, 2020, 12, .	5.8	25
347	Sulphated and Sulphonated Polymers Inhibit the Initial Interaction of Hepatitis B Virus with Hepatocytes. Antiviral Chemistry and Chemotherapy, 2002, 13, 157-164.	0.3	24
348	Viral load quantitation of SARS-coronavirus RNA using a one-step real-time RT-PCR. International Journal of Infectious Diseases, 2006, 10, 32-37.	1.5	24
349	Acute Encephalitis, a Poliomyelitisâ€like Syndrome and Neurological Sequelae in a Hamster Model for Flavivirus Infections. Brain Pathology, 2003, 13, 279-290.	2.1	24
350	Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor. Journal of General Virology, 2009, 90, 1335-1342.	1.3	24
351	Differentiated umbilical cord matrix stem cells as a newin vitromodel to study early events during hepatitis B virus infection. Hepatology, 2013, 57, 59-69.	3.6	24
352	Synthesis and Structure-Activity Relationships of Imidazole-Coumarin Conjugates against Hepatitis C Virus. Molecules, 2016, 21, 228.	1.7	24
353	Antiviral Strategies Against Chikungunya Virus. Methods in Molecular Biology, 2016, 1426, 243-253.	0.4	24
354	A Novel Series of Highly Potent Small Molecule Inhibitors of Rhinovirus Replication. Journal of Medicinal Chemistry, 2017, 60, 5472-5492.	2.9	24
355	Interferon lambda (IFN-ĥ») efficiently blocks norovirus transmission in a mouse model. Antiviral Research, 2018, 149, 7-15.	1.9	24
356	Superior cytostatic activity of the ganciclovir elaidic acid ester due to the prolonged intracellular retention of ganciclovir anabolites in herpes simplex virus type 1 thymidine kinase gene-transfected tumor cells. Gene Therapy, 1998, 5, 419-426.	2.3	23
357	Synthesis, conformational characteristics and anti-influenza virus A activity of some 2-adamantylsubstituted azacycles. Bioorganic Chemistry, 2006, 34, 248-273.	2.0	23
358	Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: Further optimization of anti-hepatitis C virus activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5111-5114.	1.0	23
359	Animal models of highly pathogenic RNA viral infections: Encephalitis viruses. Antiviral Research, 2008, 78, 69-78.	1.9	23
360	Sangamides, a new class of cyclophilin-inhibiting host-targeted antivirals for treatment of HCV infection. MedChemComm, 2012, 3, 944-949.	3.5	23

#	Article	IF	CITATIONS
361	Chemical modification of the plant isoprenoid cytokinin N6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. European Journal of Medicinal Chemistry, 2015, 90, 406-413.	2.6	23
362	A rat model for hepatitis E virus. DMM Disease Models and Mechanisms, 2016, 9, 1203-1210.	1.2	23
363	A Single Nucleoside Viral Polymerase Inhibitor Against Norovirus, Rotavirus, and Sapovirus-Induced Diarrhea. Journal of Infectious Diseases, 2018, 218, 1753-1758.	1.9	23
364	GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 2: Epidemiological distribution of o'nyong-nyong virus. Antiviral Research, 2019, 172, 104611.	1.9	23
365	Sensitive, reproducible and convenient fluorometric assay for the in vitro evaluation of anticytomegalovirus agents. Journal of Virological Methods, 1991, 35, 27-38.	1.0	22
366	<i>In vitro</i> Activity of a Novel Series of Polyoxosilicotungstates against Human Myxo-, Herpes- and Retroviruses. Antiviral Chemistry and Chemotherapy, 1993, 4, 253-262.	0.3	22
367	Highly potent and selective inhibition of bovine viral diarrhea virus replication by γ-carboline derivatives. Antiviral Research, 2010, 88, 263-268.	1.9	22
368	Toward antiviral therapy/prophylaxis for rhinovirusâ€induced exacerbations of chronic obstructive pulmonary disease: challenges, opportunities, and strategies. Reviews in Medical Virology, 2016, 26, 21-33.	3.9	22
369	Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales. Antiviral Research, 2020, 183, 104947.	1.9	22
370	Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. Journal of General Virology, 2010, 91, 1693-1697.	1.3	22
371	Potent inhibition of hemangioma formation in rats by the acyclic nucleoside phosphonate analogue cidofovir. Cancer Research, 1998, 58, 2562-7.	0.4	22
372	Synthesis and Antiviral Evaluation of Cyclic and Acyclic 2-Methyl-3-hydroxy-4-pyridinone Nucleoside Derivatives. Journal of Medicinal Chemistry, 2006, 49, 43-50.	2.9	21
373	Synthesis and primary antiviral activity evaluation of 3-hydrazono-5-nitro-2-indolinone derivatives. Arkivoc, 2006, 2006, 109-118.	0.3	21
374	Intracellular metabolism of the new antiviral compound 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine. Biochemical Pharmacology, 2008, 76, 997-1005.	2.0	21
375	Efficient synthesis and anti-enteroviral activity of 9-arylpurines. European Journal of Medicinal Chemistry, 2012, 49, 279-288.	2.6	21
376	Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Advances, 2015, 5, 85938-85949.	1.7	21
377	Identification of fukinolic acid from Cimicifuga heracleifolia and its derivatives as novel antiviral compounds against enterovirus A71 infection. International Journal of Antimicrobial Agents, 2019, 53, 128-136.	1.1	21
378	Structural and functional similarities in bunyaviruses: Perspectives for panâ€bunya antivirals. Reviews in Medical Virology, 2019, 29, e2039.	3.9	21

#	Article	IF	CITATIONS
379	A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerging Microbes and Infections, 2020, 9, 520-533.	3.0	21
380	Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine, 2021, 66, 103288.	2.7	21
381	Polyanion Inhibitors of Human Immunodeficiency Virus and Other Viruses. Part 2. Polymerized Anionic Surfactants Derived from Amino Acids and Dipeptides. Journal of Medicinal Chemistry, 1996, 39, 1626-1634.	2.9	20
382	Human Herpesvirus 8 Gene Encodes a Functional Thymidylate Synthase. Journal of Virology, 2002, 76, 10530-10532.	1.5	20
383	Rodent models for the study of therapy against flavivirus infections. Antiviral Research, 2004, 63, 67-77.	1.9	20
384	Cuâ€Mediated Selective <i>N</i> â€Arylation of Aminotriazole Acyclonucleosides. Helvetica Chimica Acta, 2009, 92, 1503-1513.	1.0	20
385	SAR studies of 9-norbornylpurines as Coxsackievirus B3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4271-4275.	1.0	20
386	Substituted 2,6-bis(benzimidazol-2-yl)pyridines: A novel chemical class of pestivirus inhibitors that targets a hot spot for inhibition of pestivirus replication in the RNA-dependent RNA polymerase. Antiviral Research, 2014, 106, 71-79.	1.9	20
387	9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction. Free Radical Biology and Medicine, 2016, 97, 223-235.	1.3	20
388	Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antiviral Research, 2017, 139, 79-87.	1.9	20
389	Rational modifications on a benzylidene-acrylohydrazide antiviral scaffold, synthesis and evaluation of bioactivity against Chikungunya virus. European Journal of Medicinal Chemistry, 2018, 149, 56-68.	2.6	20
390	Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 349-368.	2.9	20
391	Infection of zebrafish larvae with human norovirus and evaluation of the in vivo efficacy of small-molecule inhibitors. Nature Protocols, 2021, 16, 1830-1849.	5.5	20
392	Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses. PLoS Pathogens, 2015, 11, e1005165.	2.1	20
393	A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through TAcell-mediated immunity. Molecular Therapy, 2022, 30, 2968-2983.	3.7	20
394	Activity of the anti-HIV agent 9-(2-phosphonyl-methoxyethyl)-2,6-diaminopurine against cytomegalovirus in vitro and in vivo. European Journal of Clinical Microbiology and Infectious Diseases, 1993, 12, 437-446.	1.3	19
395	In vivo Antiretroviral Efficacy of Oral bis(POM)-PMEA, the bis(Pivaloyloxymethyl)prodrug of 9-(2-Phosphonylmethoxyethyl) adenine (PMEA). Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 767-770.	0.4	19
396	Conservation of the pentanucleotide motif at the top of the yellow fever virus 17D 3′ stem–loop structure is not required for replication. Journal of General Virology, 2007, 88, 1738-1747.	1.3	19

#	Article	IF	CITATIONS
397	The reduction of CSFV transmission to untreated pigs by the pestivirus inhibitor BPIP: A proof of concept. Veterinary Microbiology, 2009, 139, 365-368.	0.8	19
398	Identification of allosteric inhibitors blocking the hepatitis C virus polymerase NS5B in the RNA synthesis initiation step. Antiviral Research, 2009, 84, 48-59.	1.9	19
399	Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase. Antiviral Research, 2012, 93, 30-38.	1.9	19
400	Proof of Concept for the Inhibition of Foot-and-Mouth Disease Virus Replication by the Anti-Viral Drug 2′- <i>C</i> -Methylcytidine in Severe Combined Immunodeficient Mice. Transboundary and Emerging Diseases, 2014, 61, e89-e91.	1.3	19
401	GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 5: Entomological aspects. Antiviral Research, 2020, 174, 104670.	1.9	19
402	Discovery of novel furo[2,3â€ <i>d</i>]pyrimidinâ€2â€one–1,3,4â€oxadiazole hybrid derivatives as dual antivira and anticancer agents that induce apoptosis. Archiv Der Pharmazie, 2021, 354, e2100146.	2.1	19
403	Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Research, 2021, 193, 105142.	1.9	19
404	THE IMMUNOSUPPRESSIVE AGENT MYCOPHENOLATE MOFETIL MARKEDLY POTENTIATES THE ACTIVITY OF LOBUCAVIR [1R(1??,2??,3??)]-9-[2,3-BIS(HYDROXYMETHYL)-CYCLOBUTYL]GUANINE AGAINST DIFFERENT HERPES VIRUSES1. Transplantation, 1999, 67, 760-764.	0.5	19
405	<i>In vitro</i> antiviral activity of some novel isatin derivatives against HCV and SARS-CoV viruses. Indian Journal of Pharmaceutical Sciences, 2008, 70, 91.	1.0	19
406	Studies of antiviral activity and cytotoxicity ofWrightia tinctoriaandMorinda citrifolia. Indian Journal of Pharmaceutical Sciences, 2009, 71, 670.	1.0	19
407	Inhibitory Effects of Polycations on the Replication of Enveloped Viruses (HIV, HSV, CMV, RSV,) Tj ETQq1 1 0.7843 243-248.	014 rgBT /0 0.3	Overlock 10 18
408	Effect of Polyanionic Compounds on Intracutaneous and Intravaginal Herpesvirus Infection in Mice. Journal of Acquired Immune Deficiency Syndromes, 1995, 10, 8???12.	0.3	18
409	Inhibition of coxsackie B3 virus induced myocarditis in mice by 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile. Journal of Medical Virology, 2004, 72, 263-267.	2.5	18
410	Alkyne-Azide Click Chemistry Mediated Carbanucleosides Synthesis. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1391-1394.	0.4	18
411	Ribavirin and mycophenolic acid markedly potentiate the anti-hepatitis B virus activity of entecavir. Antiviral Research, 2007, 73, 192-196.	1.9	18
412	The Enterovirus 3C Protease Inhibitor SG85 Efficiently Blocks Rhinovirus Replication and Is Not Cross-Resistant with Rupintrivir. Antimicrobial Agents and Chemotherapy, 2015, 59, 5814-5818.	1.4	18
413	Optimization of a Class of Tryptophan Dendrimers That Inhibit HIV Replication Leads to a Selective, Specific, and Low-Nanomolar Inhibitor of Clinical Isolates of Enterovirus A71. Antimicrobial Agents and Chemotherapy, 2016, 60, 5064-5067.	1.4	18
414	In silico identification, design and synthesis of novel piperazine-based antiviral agents targeting the hepatitis C virus helicase. European Journal of Medicinal Chemistry, 2017, 125, 1115-1131.	2.6	18

#	Article	IF	CITATIONS
415	Structurally Diverse Diterpenoids from <i>Sandwithia guyanensis</i> . Journal of Natural Products, 2018, 81, 901-912.	1.5	18
416	Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- <i>d</i>]pyrimidin-7(6 <i>H</i>)-ones. ACS Infectious Diseases, 2018, 4, 605-619.	1.8	18
417	Differential antiviral activities of respiratory syncytial virus (RSV) inhibitors in human airway epithelium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1823-1829.	1.3	18
418	GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 3: Epidemiological distribution of Mayaro virus. Antiviral Research, 2019, 172, 104610.	1.9	18
419	Targeting the Viral Polymerase of Diarrhea-Causing Viruses as a Strategy to Develop a Single Broad-Spectrum Antiviral Therapy. Viruses, 2019, 11, 173.	1.5	18
420	Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerging Microbes and Infections, 2019, 8, 1734-1746.	3.0	18
421	Anti-herpesvirus activity of (1′S,2′R)-9-[[1′,2′-bis(hydroxymethyl)-cycloprop-1′-yl]methyl]guanine (A vitro and in vivo. Antiviral Research, 2001, 49, 115-120.	-5021) in 1.9	17
422	The Southeast Asian Influenza Clinical Research Network: Development and challenges for a new multilateral research endeavor. Antiviral Research, 2008, 78, 64-68.	1.9	17
423	Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics. Journal of Antimicrobial Chemotherapy, 2011, 66, 1287-1294.	1.3	17
424	Simple and inexpensive three-step rapid amplification of cDNA 5′ ends using 5′ phosphorylated primers. Analytical Biochemistry, 2013, 434, 1-3.	1.1	17
425	Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases. Antiviral Research, 2014, 103, 17-24.	1.9	17
426	Norovirus genetic diversity and evolution: implications for antiviral therapy. Current Opinion in Virology, 2016, 20, 92-98.	2.6	17
427	Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases. Journal of Medicinal Chemistry, 2017, 60, 1400-1416.	2.9	17
428	Structure-activity relationship studies on a Trp dendrimer with dual activities against HIV and enterovirus A71. Modifications on the amino acid. Antiviral Research, 2017, 139, 32-40.	1.9	17
429	Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C. PLoS Biology, 2020, 18, e3000904.	2.6	17
430	Cytopathic SARS-CoV-2 screening on VERO-E6 cells in a large-scale repurposing effort. Scientific Data, 2022, 9, .	2.4	17
431	Impact of Direct Virus-Induced Neuronal Dysfunction and Immunological Damage on the Progression of Flavivirus (Modoc) Encephalitis in a Murine Model. Journal of NeuroVirology, 2003, 9, 69-78.	1.0	16
432	Prospects for Antiviral Therapy. Advances in Virus Research, 2003, 61, 511-553.	0.9	16

#	Article	IF	CITATIONS
433	Norbornane as the novel pseudoglycone moiety in nucleosides. Tetrahedron, 2009, 65, 9291-9299.	1.0	16
434	Classical swine fever outbreak containment using antiviral supplementation: A potential alternative to emergency vaccination and stamping-out. Preventive Veterinary Medicine, 2012, 106, 34-41.	0.7	16
435	In vitro selection and characterization of HCV replicons resistant to multiple non-nucleoside polymerase inhibitors. Journal of Hepatology, 2012, 56, 41-48.	1.8	16
436	Deletion of the vaccinia virus F13L gene results in a highly attenuated virus that mounts a protective immune response against subsequent vaccinia virus challenge. Antiviral Research, 2012, 93, 160-166.	1.9	16
437	The potential of antiviral agents to control classical swine fever: A modelling study. Antiviral Research, 2013, 99, 245-250.	1.9	16
438	Norbornane-based nucleoside and nucleotide analogues locked in North conformation. Bioorganic and Medicinal Chemistry, 2015, 23, 184-191.	1.4	16
439	Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. Journal of Natural Products, 2016, 79, 675-679.	1.5	16
440	Fluorination of Naturally Occurring N6-Benzyladenosine Remarkably Increased Its Antiviral Activity and Selectivity. Molecules, 2017, 22, 1219.	1.7	16
441	Design, synthesis and evaluation against Chikungunya virus of novel small-molecule antiviral agents. Bioorganic and Medicinal Chemistry, 2018, 26, 869-874.	1.4	16
442	Scaffold Morphing Approach To Expand the Toolbox of Broad-Spectrum Antivirals Blocking Dengue/Zika Replication. ACS Medicinal Chemistry Letters, 2019, 10, 558-563.	1.3	16
443	Design, Synthesis and Discovery of <i>N,N'</i> â€Carbazoylâ€arylâ€urea Inhibitors of Zika NS5 Methyltransferase and Virus Replication. ChemMedChem, 2020, 15, 385-390.	1.6	16
444	Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine Analogues as Novel Inhibitors of Chikungunya Virus. ACS Medicinal Chemistry Letters, 2020, 11, 906-912.	1.3	16
445	MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Frontiers in Immunology, 2022, 13, 845969.	2.2	16
446	Calcineurin as a possible new target for treatment of Parkinson's disease. Medical Hypotheses, 1994, 43, 132-134.	0.8	15
447	Antiviral activity of ganciclovir elaidic acid ester against herpesviruses. Antiviral Research, 2000, 45, 157-167.	1.9	15
448	A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses. Journal of Virological Methods, 2003, 108, 67-74.	1.0	15
449	Cidofovir is effective against caprine herpesvirus 1 infection in goats. Antiviral Research, 2007, 74, 138-141.	1.9	15
450	Increased gelatinase B/matrix metalloproteinase 9 (MMP-9) activity in a murine model of acute coxsackievirus B4-induced pancreatitis. Virology, 2008, 382, 20-27.	1.1	15

#	Article	IF	CITATIONS
451	Assessing the Efficacy of Cidofovir against Herpesvirus-Induced Genital Lesions in Goats Using Different Therapeutic Regimens. Antimicrobial Agents and Chemotherapy, 2008, 52, 4064-4068.	1.4	15
452	Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative. Antiviral Research, 2013, 100, 238-245.	1.9	15
453	From norbornane-based nucleotide analogs locked in South conformation to novel inhibitors of feline herpes virus. Bioorganic and Medicinal Chemistry, 2014, 22, 2974-2983.	1.4	15
454	Synthesis, biological activity and structure–activity relationship of 4,5-dimethoxybenzene derivatives inhibitor of rhinovirus 14 infection. European Journal of Medicinal Chemistry, 2014, 76, 445-459.	2.6	15
455	Human stem cell-derived hepatocyte-like cells support Zika virus replication and provide a relevant model to assess the efficacy of potential antivirals. PLoS ONE, 2018, 13, e0209097.	1.1	15
456	Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Research, 2019, 161, 1-9.	1.9	15
457	Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
458	1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. European Journal of Medicinal Chemistry, 2021, 221, 113494.	2.6	15
459	Tiyoüreler, açiltiyoüreler ve 4-tiyazolidinonların sentezi, karakterizasyonu ve antikanser ve antiviral etkilerinin deÄŸerlendirilmesi. Marmara Pharmaceutical Journal, 2017, 21, 371-371.	0.5	15
460	Mechanism of the Antiviral Activity of New Aurintricarboxylic Acid Analogues. Antiviral Chemistry and Chemotherapy, 1996, 7, 142-152.	0.3	14
461	Inflammatory rather than infectious insults play a role in exocrine tissue damage in a mouse model for coxsackievirus B4â€induced pancreatitis. Journal of Pathology, 2009, 217, 633-641.	2.1	14
462	Synthesis of novel carbocyclic nucleoside analogues derived from 7-oxabicyclo[2.2.1]heptane-2-methanol. Collection of Czechoslovak Chemical Communications, 2009, 74, 487-502.	1.0	14
463	Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication. Antiviral Research, 2013, 100, 98-101.	1.9	14
464	Tonantzitlolones from Stillingia lineata ssp. lineata as potential inhibitors of chikungunya virus. Phytochemistry Letters, 2015, 12, 313-319.	0.6	14
465	Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model. Antiviral Research, 2016, 132, 76-84.	1.9	14
466	New class of early-stage enterovirus inhibitors with a novel mechanism of action. Antiviral Research, 2017, 147, 67-74.	1.9	14
467	Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochemical Pharmacology, 2020, 174, 113777.	2.0	14
468	Anti-norovirus activity of C7-modified 4-amino-pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. European Journal of Medicinal Chemistry, 2020, 195, 112198.	2.6	14

#	Article	IF	CITATIONS
469	Novel therapeutic approaches to simultaneously target rhinovirus infection and asthma/COPD pathogenesis. F1000Research, 2017, 6, 1860.	0.8	14
470	<i>In vitro</i> Activity of Polyhydroxycarboxylates against Herpesviruses and Hiv. Antiviral Chemistry and Chemotherapy, 2001, 12, 337-345.	0.3	13
471	Synthesis and anti-CVB 3 evaluation of substituted 5-nitro-2-phenoxybenzonitriles. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5123-5125.	1.0	13
472	FDA perspective on antivirals against biothreats: Communicate early and often. Antiviral Research, 2008, 78, 60-63.	1.9	13
473	88 PARTICULAR IN VITRO ANTI-HCV ACTIVITIES AND RESISTANCE PROFILE OF THE CYCLOPHILIN INHIBITOR DEBIO 025. Journal of Hepatology, 2009, 50, S36.	1.8	13
474	3′-Deoxy Phosphoramidate Dinucleosides as Improved Inhibitors of Hepatitis C Virus Subgenomic Replicon and NS5B Polymerase Activity. Journal of Medicinal Chemistry, 2010, 53, 6608-6617.	2.9	13
475	Synthesis of novel azanorbornylpurine derivatives. Tetrahedron, 2012, 68, 1286-1298.	1.0	13
476	Laboratory validation of a lateral flow device for the detection of CyHV-3 antigens in gill swabs. Journal of Virological Methods, 2013, 193, 679-682.	1.0	13
477	9-[2-(R)-(Phosphonomethoxy)propyl]-2,6-diaminopurine (R)-PMPDAP and its prodrugs: Optimized preparation, including identification of by-products formed, and antiviral evaluation in vitro. Bioorganic and Medicinal Chemistry, 2013, 21, 1199-1208.	1.4	13
478	Treatment with a Nucleoside Polymerase Inhibitor Reduces Shedding of Murine Norovirus in Stool to Undetectable Levels without Emergence of Drug-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2016, 60, 1907-1911.	1.4	13
479	Biological or pharmacological activation of protein kinase C alpha constrains hepatitis E virus replication. Antiviral Research, 2017, 140, 1-12.	1.9	13
480	Identification of Broadâ€Spectrum Dengue/Zika Virus Replication Inhibitors by Functionalization of Quinoline and 2,6â€Diaminopurine Scaffolds. ChemMedChem, 2018, 13, 1371-1376.	1.6	13
481	ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Global Health Action, 2019, 12, 1666566.	0.7	13
482	A dengue type 2 reporter virus assay amenable to high-throughput screening. Antiviral Research, 2020, 183, 104929.	1.9	13
483	Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors. Microorganisms, 2021, 9, 734.	1.6	13
484	Development and optimization of a highâ€throughput screening assay for in vitro antiâ€SARSâ€CoVâ€2 activity: Evaluation of 5676 Phase 1 Passed Structures. Journal of Medical Virology, 2022, 94, 3101-3111.	2.5	13
485	Nucleosides and Nucleotides. Part 154. New Neplanocin Analogues. VIII. Synthesis and Biological Activity of 6'-C-Ethyl, -Ethenyl, and -Ethynyl Derivatives of Neplanocin A Chemical and Pharmaceutical Bulletin, 1997, 45, 1163-1168.	0.6	12
486	Synthesis and Antiviral and Cytostatic Activities of Carbocyclic Nucleosides Incorporating a Modified Cyclobutane Ring. Archiv Der Pharmazie, 1999, 332, 348-352.	2.1	12

#	Article	IF	CITATIONS
487	The anti-herpesvirus activity of (1′S,2′R)-9-[[1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl]guanine markedly potentiated by the immunosuppressive agent mycophenolate mofetil. Antiviral Research, 2001, 49, 121-127.	e is 1.9	12
488	Phosphoramidate Dinucleosides as Hepatitis C Virus Polymerase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 5745-5757.	2.9	12
489	S-Aryltriazole acyclonucleosides: Synthesis and biological evaluation against hepatitis C virus. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3610-3613.	1.0	12
490	Replication capacity of minority variants in viral populations can affect the assessment of resistance in HCV chimeric replicon phenotyping assays. Journal of Antimicrobial Chemotherapy, 2012, 67, 2327-2337.	1.3	12
491	Rapid and convenient assays to assess potential inhibitory activity on in vitro hepatitis A replication. Antiviral Research, 2013, 98, 325-331.	1.9	12
492	Are statins a viable option for the treatment of infections with the hepatitis C virus?. Antiviral Research, 2014, 105, 92-99.	1.9	12
493	H1PVAT is a novel and potent early-stage inhibitor of poliovirus replication that targets VP1. Antiviral Research, 2014, 110, 1-9.	1.9	12
494	Bicyclic and Tricyclic "Expanded―Nucleobase Analogues of Sofosbuvir: New Scaffolds for Hepatitis C Therapies. ACS Infectious Diseases, 2015, 1, 357-366.	1.8	12
495	A Refined Guinea Pig Model of Foot-and-Mouth Disease Virus Infection for Assessing the Efficacy of Antiviral Compounds. Transboundary and Emerging Diseases, 2016, 63, e205-e212.	1.3	12
496	Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms, 2021, 9, 1599.	1.6	12
497	Synthesis, Antiviral and Cytostatic Activities of Carbocyclic Nucleosides Incorporating a Modified Cyclopentane Ring. Part 2: ¹ Adenosine and Uridine Analogues. Nucleosides & Nucleotides, 1998, 17, 1255-1266.	0.5	11
498	Hydroxyurea Potentiates the Antiherpesvirus Activities of Purine and Pyrimidine Nucleoside and Nucleoside Phosphonate Analogs. Antimicrobial Agents and Chemotherapy, 1999, 43, 2885-2892.	1.4	11
499	Effect of TNP-470 (AGM-1470) on the Growth of Rat Rhabdomyosarcoma Tumors of Different Sizes. Cancer Investigation, 2001, 19, 35-40.	0.6	11
500	Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochemical Pharmacology, 2016, 120, 15-21.	2.0	11
501	Shape-based virtual screening, synthesis and evaluation of novel pyrrolone derivatives as antiviral agents against HCV. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 936-940.	1.0	11
502	Heterocyclic pharmacochemistry of new rhinovirus antiviral agents: A combined computational and experimental study. European Journal of Medicinal Chemistry, 2017, 140, 528-541.	2.6	11
503	Species Specificity of Type III Interferon Activity and Development of a Sensitive Luciferase-Based Bioassay for Quantitation of Mouse Interferon-λ. Journal of Interferon and Cytokine Research, 2018, 38, 469-479.	0.5	11
504	A Viral Polymerase Inhibitor Reduces Zika Virus Replication in the Reproductive Organs of Male Mice. International Journal of Molecular Sciences, 2019, 20, 2122.	1.8	11

#	Article	IF	CITATIONS
505	Establishing a Unified COVID-19 "Immunome― Integrating Coronavirus Pathogenesis and Host Immunopathology. Frontiers in Immunology, 2020, 11, 1642.	2.2	11
506	Small-molecule inhibitors of TBK1 serve as an adjuvant for a plasmid-launched live-attenuated yellow fever vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 2196-2203.	1.4	11
507	Synthesis and antiviral activities of quinazolinamine–coumarin conjugates toward chikungunya and hepatitis C viruses. European Journal of Medicinal Chemistry, 2022, 232, 114164.	2.6	11
508	Use of digoxigenin-labelled probes for the quantitation of HBV-DNA in antiviral drug evaluation. Journal of Virological Methods, 1999, 81, 155-158.	1.0	10
509	Synthesis and antiviral evaluation of 3-hydroxy-2-methylpyridin-4-one dideoxynucleoside derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4371-4374.	1.0	10
510	NIAID resources for developing new therapies for severe viral infections. Antiviral Research, 2008, 78, 51-59.	1.9	10
511	Evaluation of the antiviral activity of (1′S,2′R)-9-[[1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl]g (A-5021) against equine herpesvirus type 1 in cell monolayers and equine nasal mucosal explants. Antiviral Research, 2012, 93, 234-238.	uanine 1.9	10
512	Hydantoin: The mechanism of its inÂvitro anti-enterovirus activity revisited. Antiviral Research, 2016, 133, 106-109.	1.9	10
513	Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerging Microbes and Infections, 2019, 8, 1076-1085.	3.0	10
514	Comparative analysis of the molecular mechanism of resistance to vapendavir across a panel of picornavirus species. Antiviral Research, 2021, 195, 105177.	1.9	10
515	Selective Inhibitors of Hepatitis B Virus Replication. Anti-Infective Agents in Medicinal Chemistry, 2003, 2, 227-240.	0.9	10
516	Suboptimal response to adefovir dipivoxil therapy for chronic hepatitis B in nucleoside-naive patients is not due to pre-existing drug-resistant mutants. Antiviral Therapy, 2008, 13, 381-8.	0.6	10
517	The SARS-CoV-2 Alpha variant exhibits comparable fitness to the D614G strain in a Syrian hamster model. Communications Biology, 2022, 5, 225.	2.0	10
518	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	1.3	10
519	Potent Inhibition of Genital Herpesvirus Infection in Goats by Cidofovir. Antiviral Therapy, 2007, 12, 977-980.	0.6	10
520	Synthesis and antiviral activities of new acyclic and "double-headed―nucleoside analogues. Bioorganic Chemistry, 2007, 35, 221-232.	2.0	9
521	Synthesis and Antiviral Evaluation of 2′-C-Methyl Analogues of 5-Alkynyl- and 6-Alkylfurano- and Pyrrolo[2,3- <i>d</i>]Pyrimidine Ribonucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 713-723.	0.4	9
522	Synthesis and antiviral activity of boranophosphonate isosteres of AZT and d4T monophosphates. European Journal of Medicinal Chemistry, 2010, 45, 849-856.	2.6	9

#	Article	IF	CITATIONS
523	Synthesis of novel racemic carbocyclic nucleosides derived from 5,6-disubstituted norbornene. Collection of Czechoslovak Chemical Communications, 2010, 75, 1-20.	1.0	9
524	Acyclic nucleoside thiophosphonates as potent inhibitors of HIV and HBV replication. European Journal of Medicinal Chemistry, 2011, 46, 4281-4288.	2.6	9
525	In vitro surrogate models to aid in the development of antivirals for the containment of foot-and-mouth disease outbreaks. Antiviral Research, 2014, 105, 59-63.	1.9	9
526	Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds. Antiviral Chemistry and Chemotherapy, 2015, 24, 56-61.	0.3	9
527	New HSV-1 Anti-Viral 1′-Homocarbocyclic Nucleoside Analogs with an Optically Active Substituted Bicyclo[2.2.1]Heptane Fragment as a Glycoside Moiety. Molecules, 2019, 24, 2446.	1.7	9
528	Multitarget CFTR Modulators Endowed with Multiple Beneficial Side Effects for Cystic Fibrosis Patients: Toward a Simplified Therapeutic Approach. Journal of Medicinal Chemistry, 2019, 62, 10833-10847.	2.9	9
529	Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Research, 2019, 168, 210-214.	1.9	9
530	The path towards effective antivirals against rabies. Vaccine, 2019, 37, 4660-4662.	1.7	9
531	Chemical Evolution of Antivirals Against Enterovirus D68 through Proteinâ€∓emplated Knoevenagel Reactions. Angewandte Chemie - International Edition, 2021, 60, 13294-13301.	7.2	9
532	Structural Insights into the Mechanisms of Action of Functionally Distinct Classes of Chikungunya Virus Nonstructural Protein 1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2021, 65, e0256620.	1.4	9
533	Multivalent Tryptophan―and Tyrosineâ€Containing [60]Fullerene Hexaâ€Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chemistry - A European Journal, 2021, 27, 10700-10710.	1.7	9
534	Effect of polyanionic compounds on intracutaneous and intravaginal herpesvirus infection in mice: impact on the search for vaginal microbicides with anti-HIV activity. Journal of Acquired Immune Deficiency Syndromes, 1995, 10, 8-12.	0.3	9
535	Human cytomegalovirus modulates the Ca2+ response to vasopressin and ATP in fibroblast cultures. Cell Calcium, 1995, 18, 111-119.	1.1	8
536	Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 495-498.	0.7	8
537	Synthesis of novel racemic carbocyclic nucleoside analogues derived from 4,8-dioxatricyclo[4.2.1.03,7]nonane-9-methanol and 4-oxatricyclo[4.3.1.03,7]decane-10-methanol, compounds with activity against Coxsackie viruses. Collection of Czechoslovak Chemical Communications. 2009. 74. 469-485.	1.0	8
538	Exploration of the <i>in vitro</i> Antiviral Activity of a Series of New Pyrimidine Analogues on the Replication of HIV and HCV. Antiviral Chemistry and Chemotherapy, 2013, 23, 103-112.	0.3	8
539	3-(imidazo[1,2- a :5,4- b ′]dipyridin-2-yl)aniline inhibits pestivirus replication by targeting a hot spot drug binding pocket in the RNA-dependent RNA polymerase. Antiviral Research, 2016, 129, 99-103.	1.9	8
540	Zika and Other Emerging Viruses: Aiming at the Right Target. Cell Host and Microbe, 2016, 20, 420-422.	5.1	8

#	Article	IF	CITATIONS
541	Glutathione is a highly efficient thermostabilizer of poliovirus Sabin strains. Vaccine, 2017, 35, 1370-1372.	1.7	8
542	A new antiviral scaffold for human norovirus identified with computer-aided approaches on the viral polymerase. Scientific Reports, 2019, 9, 18413.	1.6	8
543	Antiviral and Cytotoxic Activity of Different Plant Parts of Banana (Musa spp.). Viruses, 2020, 12, 549.	1.5	8
544	Quinolinecarboxamides Inhibit the Replication of the Bovine Viral Diarrhea Virus by Targeting a Hot Spot for the Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase. Molecules, 2020, 25, 1283.	1.7	8
545	COVID-19 and the intensive care unit: vaccines to the rescue. Intensive Care Medicine, 2021, 47, 786-789.	3.9	8
546	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	1.9	8
547	A High-Throughput Yellow Fever Neutralization Assay. Microbiology Spectrum, 2022, 10, .	1.2	8
548	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	1.9	8
549	Protective activity of the lipid A analogue GLA-60 against murine cytomegalovirus infection in immunodeficient mice. Journal of General Virology, 1993, 74, 1399-1403.	1.3	7
550	Synthesis and antiviral activity of novel derivatives of 2'-Â-C-methylcytidine. Nucleic Acids Symposium Series, 2008, 52, 605-606.	0.3	7
551	Diagnostic performance and application of two commercial cell viability assays in foot-and-mouth disease research. Journal of Virological Methods, 2011, 173, 108-114.	1.0	7
552	Novel substituted 9-norbornylpurines and their activities against RNA viruses. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1963-1968.	1.0	7
553	Fitness and Virulence of a Coxsackievirus Mutant That Can Circumnavigate the Need for Phosphatidylinositol 4-Kinase Class III Beta. Journal of Virology, 2014, 88, 3048-3051.	1.5	7
554	Mannitol treatment is not effective in therapy of rabies virus infection in mice. Vaccine, 2019, 37, 4710-4714.	1.7	7
555	Identification of host factors binding to dengue and Zika virus subgenomic RNA by efficient yeast three-hybrid screens of the human ORFeome. RNA Biology, 2021, 18, 732-744.	1.5	7
556	Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV-1 and EV-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10027-10046.	2.9	7
557	A novel therapeutic HBV vaccine candidate induces strong polyfunctional cytotoxic T cell responses in mice. JHEP Reports, 2021, 3, 100295.	2.6	7
558	A Novel Class of Norovirus Inhibitors Targeting the Viral Protease with Potent Antiviral Activity In Vitro and In Vivo. Viruses, 2021, 13, 1852.	1.5	7

#	Article	IF	CITATIONS
559	Infections with flaviviridae. Verhandelingen - Koninklijke Academie Voor Geneeskunde Van België, 1999, 61, 661-97; discussion 697-9.	0.2	7
560	Host Defense Mechanisms Against Murine Cytomegalovirus Infection Induced by Poly I:C in Severe Combined Immune Deficient (SCID) Mice. Experimental Biology and Medicine, 1994, 207, 191-196.	1.1	6
561	Absence of Infectious Retinitis after Injection of Human Cytomegalovirus into Rabbit Eyes. Journal of Infectious Diseases, 1995, 171, 782-787.	1.9	6
562	Antiviral and immunomodulatory activity of the metal chelator ethylenediaminedisuccinic acid against cytomegalovirus in vitro and in vivo. Antiviral Research, 2002, 55, 179-188.	1.9	6
563	International research networks in viral structural proteomics: Again, lessons from SARS. Antiviral Research, 2008, 78, 47-50.	1.9	6
564	R75761, a lead compound for the development of antiviral drugs in late stage poliomyelitis eradication strategies and beyond. Antiviral Research, 2008, 78, 278-281.	1.9	6
565	Development of New Sulfur-Containing Conjugated Compounds as Anti-HCV Agents. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1144-1152.	0.8	6
566	Discovery of pyrazinone based compounds that potently inhibit the drug-resistant enzyme variant R155K of the hepatitis C virus NS3 protease. Bioorganic and Medicinal Chemistry, 2016, 24, 2603-2620.	1.4	6
567	VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection. European Journal of Medicinal Chemistry, 2016, 115, 453-462.	2.6	6
568	Upregulation of sodium taurocholate cotransporter polypeptide during hepatogenic differentiation of umbilical cord matrix mesenchymal stem cells facilitates hepatitis B entry. Stem Cell Research and Therapy, 2017, 8, 204.	2.4	6
569	Antiviral effects of selected nucleoside analogues against human parechoviruses A1 and A3. Antiviral Research, 2019, 162, 51-53.	1.9	6
570	Cytidine nucleoside analog is an effective antiviral drug against Trichomonasvirus. Journal of Microbiology, Immunology and Infection, 2022, 55, 191-198.	1.5	6
571	Assessing <i>In Vitro</i> Resistance Development in Enterovirus A71 in the Context of Combination Antiviral Treatment. ACS Infectious Diseases, 2021, 7, 2801-2806.	1.8	6
572	Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerging Microbes and Infections, 2021, 10, 2279-2290.	3.0	6
573	SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells. Viruses, 2022, 14, 951.	1.5	6
574	Development of a Foot-and-Mouth Disease Infection Model in Severe Combined Immunodeficient Mice for the Preliminary Evaluation of Antiviral Drugs. Transboundary and Emerging Diseases, 2010, 57, 430-433.	1.3	5
575	Synthesis of novel thienonorbornylpurine derivatives. Tetrahedron, 2012, 68, 3195-3204.	1.0	5
576	Intra-host variation structure of classical swine fever virus NS5B in relation to antiviral therapy. Antiviral Research, 2013, 98, 266-272.	1.9	5

#	Article	IF	CITATIONS
577	A thiazepino[4,5-a]benzimidazole derivative hampers the RNA replication of Eurasian serotypes of foot-and-mouth disease virus. Biochemical and Biophysical Research Communications, 2014, 455, 378-381.	1.0	5
578	Synthesis of Novel Purineâ€Based Coxsackievirus Inhibitors Bearing Polycylic Substituents at the Nâ€9 Position. Archiv Der Pharmazie, 2014, 347, 478-485.	2.1	5
579	mTOR-inhibitors may aggravate chronic hepatitis E. Journal of Hepatology, 2014, 61, 720-722.	1.8	5
580	In vitro combinations containing Tegobuvir are highly efficient in curing cells from HCV replicon and in delaying/preventing the development of drug resistance. Antiviral Research, 2015, 120, 112-121.	1.9	5
581	NMR-based conformational analysis of 2′,6-disubstituted uridines and antiviral evaluation of new phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry, 2015, 23, 5809-5815.	1.4	5
582	Antiviral treatment of feline immunodeficiency virus-infected cats with (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine. Journal of Feline Medicine and Surgery, 2015, 17, 79-86.	0.6	5
583	Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold. European Journal of Medicinal Chemistry, 2018, 148, 453-464.	2.6	5
584	A reassessment of mycophenolic acid as a lead compound for the development of inhibitors of chikungunya virus replication. Tetrahedron, 2018, 74, 1294-1306.	1.0	5
585	2019 meeting of the global virus network. Antiviral Research, 2019, 172, 104645.	1.9	5
586	Enhanced efficacy of endonuclease inhibitor baloxavir acid against orthobunyaviruses when used in combination with ribavirin. Journal of Antimicrobial Chemotherapy, 2020, 75, 3189-3193.	1.3	5
587	Regioselective convergent synthesis of 2-arylidene thiazolo[3,2- <i>a</i>]pyrimidines as potential anti-chikungunya agents. RSC Advances, 2020, 10, 5191-5195.	1.7	5
588	Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Molecular Therapy - Methods and Clinical Development, 2022, 25, 215-224.	1.8	5
589	The legacy of ZikaPLAN: a transnational research consortium addressing Zika. Global Health Action, 2021, 14, 2008139.	0.7	5
590	Protective activity of lipid A analogue GLA-60 against murine cytomegalovirus infection in mice. Journal of Medical Virology, 1993, 40, 222-227.	2.5	4
591	Strategies for the treatment and prevention of cytomegalovirus infections. International Journal of Antimicrobial Agents, 1993, 3, 187-204.	1.1	4
592	Anti-HIV and anti-HCMV Activities of New Aurintricarboxylic Acid Analogues. Antiviral Chemistry and Chemotherapy, 1995, 6, 179-186.	0.3	4
593	Synthesis of 6-Arylthio Analogs of 2′,3′-Dideoxy-3′-Fluoroguanosine and Their Effect against Hepatitis B Virus Replication. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 655-665.	0.4	4
594	Short and efficient access to imidazo[1,2-a]pyrrolo[3,2-c]pyridine derivatives. Tetrahedron Letters, 2010, 51, 6082-6085.	0.7	4

#	Article	IF	CITATIONS
595	Complete Genome Sequence of a Rat Hepatitis E Virus Strain Isolated in the United States. Genome Announcements, 2014, 2, .	0.8	4
596	Synthesis of Enantiomerically Pure 1â€2,2â€2-cis-dideoxy, -dideoxydiÂdehydro, -ribo and -deoxy Carbocyclic Nucleoside Analogues. Synthesis, 2018, 50, 2266-2280.	1.2	4
597	PI4KIII inhibitor enviroxime impedes the replication of the hepatitis C virus by inhibiting PI3 kinases. Journal of Antimicrobial Chemotherapy, 2018, 73, 3375-3384.	1.3	4
598	Isolation of phenanthrenes and identification of phorbol ester derivatives as potential anti-CHIKV agents using FBMN and NAP from Sagotia racemosa. Phytochemistry, 2019, 167, 112101.	1.4	4
599	The Development of RNA-KISS, a Mammalian Three-Hybrid Method to Detect RNA–Protein Interactions in Living Mammalian Cells. Journal of Proteome Research, 2020, 19, 2529-2538.	1.8	4
600	Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorganic and Medicinal Chemistry, 2020, 28, 115401.	1.4	4
601	Animal experiments show impact of vaccination on reduction of SARS-CoV-2 virus circulation: A model for vaccine development?. Biologicals, 2021, 73, 1-7.	0.5	4
602	Preliminary report of anti-hepatitis C virus activity of chloroquine and hydroxychloroquine in huh-5-2 cell line. Indian Journal of Pharmaceutical Sciences, 2006, 68, 538.	1.0	4
603	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	1.7	4
604	Detection of substances recognized by antisera directed against vertebrate somatotropin, prolactin and placental lactogen, within the brain of the insect Locusta migratoria: A comparison of immunocytochemical localization patterns. Comparative Biochemistry and Physiology A, Comparative Physiology, 1990, 97, 35-40.	0.7	3
605	Therapy for herpesvirus infections. Current Opinion in Infectious Diseases, 1992, 5, 816-826.	1.3	3
606	Human Cytomegalovirus Stimulates Thymidylate Synthase in Human Embryonic Lung Cells: A Possible Target for Anti-HCMV Therapy?. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1153-1156.	0.4	3
607	Budding Yeast as a Screening Tool for Discovery of Nucleoside Analogs for Use in HSV-1 TK Suicide-Gene Therapy. BioTechniques, 1999, 27, 772-777.	0.8	3
608	Synthesis, Antiretroviral and Antioxidant Evaluation of a Series of New Benzo[b]furan Derivatives. Arzneimittelforschung, 2001, 51, 156-162.	0.5	3
609	Ribavirin Derivatives with a Hexitol Moiety: Synthesis and Antiviral Evaluation. Antiviral Chemistry and Chemotherapy, 2003, 14, 23-30.	0.3	3
610	Cross-Metathesis Mediated Synthesis of New Acyclic Nucleoside Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1399-1402.	0.4	3
611	New Analogs of Acyclovir Substituted at the Side Chain. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 917-920.	0.4	3
612	Evaluation of Hexadecyloxypropyl-9- <i>R</i> -[2-(Phosphonomethoxy)Propyl]-Adenine, CMX157, as a Potential Treatment for Human Immunodeficiency Virus Type 1 and Hepatitis B Virus Infections. Antimicrobial Agents and Chemotherapy, 2007, 51, 4538-4538.	1.4	3

#	Article	IF	CITATIONS
613	Conformationally locked nucleoside analogues based on the bridgehead substituted 7-oxonorbornane and their antiviral properties. Collection of Czechoslovak Chemical Communications, 2011, 76, 1549-1566.	1.0	3
614	Selecting and Characterizing Drug-Resistant Hepatitis C Virus Replicon. Methods in Molecular Biology, 2013, 1030, 93-103.	0.4	3
615	Exploring the importance of zinc binding and steric/hydrophobic factors in novel HCV replication inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1196-1199.	1.0	3
616	Progress in human picornavirus research: New findings from the AIROPico consortium. Antiviral Research, 2019, 161, 100-107.	1.9	3
617	Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Identification of active compounds. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110268.	0.3	3
618	Screening and in vitro antiviral assessment of small molecules against fluorescent protein-expressing Bunyamwera virus in a cell-based assay using high-content imaging. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110334.	0.3	3
619	Ivermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms, 2022, 10, 633.	1.6	3
620	Gammaherpesviruses encode functional dihydrofolate reductase activity. Biochemical and Biophysical Research Communications, 2002, 297, 756-759.	1.0	2
621	Synthesis and Antiviral Evaluation of Ribavirin Congeners Containing a Hexitol Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 849-851.	0.4	2
622	In vivomonitoring of acute flavivirus (Modoc) encephalitis with regional and whole-brain quantitative diffusion magnetic resonance imaging. Journal of NeuroVirology, 2004, 10, 255-259.	1.0	2
623	Mouse and Hamster Models for the Study of Therapy against Flavivirus Infections. Novartis Foundation Symposium, 2008, , 218-232.	1.2	2
624	P209: Near fullâ€length hepatitis E virus genome sequencing analysis in a chronically infected patient following ribavirin treatment failure. Journal of Viral Hepatitis, 2015, 22, 124-125.	1.0	2
625	Understanding the molecular mechanism of host-based statin resistance in hepatitis C virus replicon containing cells. Biochemical Pharmacology, 2015, 96, 190-201.	2.0	2
626	Assessment of the activity of directly acting antivirals and other products against different genotypes of hepatitis C virus prevalent in resource-poor countries. Antiviral Research, 2016, 125, 43-45.	1.9	2
627	Antiviral effect of the nucleoside analogue cidofovir in the context of sexual transmission of a gammaherpesvirus in mice. Journal of Antimicrobial Chemotherapy, 2018, 73, 2095-2103.	1.3	2
628	In vitro Assay to Assess Efficacy of Potential Antiviral Compounds against Enterovirus D68. Bio-protocol, 2017, 7, e2183.	0.2	2
629	New Conjugated Compounds Coming On Stream against Hepatitis C Virus. SM Journal of Hepatitis Research and Treatment, 2016, 2, 1-4.	0.0	2
630	Synthesis, X-ray crystallographic analysis, DFT studies and biological evaluation of triazolopyrimidines and 2-anilinopyrimidines. Journal of Molecular Structure, 2022, 1252, 132092.	1.8	2

#	Article	IF	CITATIONS
631	Metabolically Improved Stem Cell Derived Hepatocyte-Like Cells Support HBV Life Cycle and Are a Promising Tool for HBV Studies and Antiviral Drug Screenings. Biomedicines, 2022, 10, 268.	1.4	2
632	Potent inhibition of genital herpesvirus infection in goats by cidofovir. Antiviral Therapy, 2007, 12, 977-9.	0.6	2
633	Effect of polyanionic compounds on intracutaneous and intravaginal herpes virus infection in mice: Impact on the search for vaginal microbicides. Antiviral Research, 1995, 26, A333.	1.9	1
634	Differential antiviral activity of several IMP dehydrogenase inhibitors. Antiviral Research, 1997, 34, A87.	1.9	1
635	Methods in Anti-HCMV Research. , 2000, 33, 129-152.		1
636	Introduction to the Special Issue dedicated to Prof. Erik De Clercq for reaching the Professor Emeritus status at the Katholieke Universiteit Leuven. Antiviral Research, 2006, 71, 75-76.	1.9	1
637	482 IN VITRO COMBINATION THERAPY WITH TEGOBUVIR (GS-9190) IS HIGHLY EFFICIENT IN CURING CELLS FROM HCV REPLICON AND IN DELAYING/PREVENTING THE DEVELOPMENT OF ANTIVIRAL RESISTANCE. Journal of Hepatology, 2011, 54, S197-S198.	1.8	1
638	Adefovir serum levels do not differ between responders and nonresponders. Journal of Viral Hepatitis, 2011, 18, e175-8.	1.0	1
639	841 BC556, A POTENT, PAN-GENOTYPIC, HIGH BARRIER TO RESISTANCE, SECOND GENERATION CYCLOPHILIN INHIBITOR FOR TREATMENT OF CHRONIC HCV INFECTION. Journal of Hepatology, 2012, 56, S328.	1.8	1
640	The microRNA 221/222 cluster controls CVB3-induced myocarditis: could tiny microRNAs explain adverse inflammation in the heart?. European Heart Journal, 2013, 34, 5866-5866.	1.0	1
641	Novel symmetrical phenylenediamines as potential anti-hepatitis C virus agents. Antiviral Chemistry and Chemotherapy, 2015, 24, 155-160.	0.3	1
642	ID: 146. Cytokine, 2015, 76, 94.	1.4	1
643	Antiviral Agents Towards Chikungunya Virus: Structures, Syntheses, and Isolation from Natural Sources. , 2017, , 251-274.		1
644	New Models to Study Hepatitis E Virus Replication and Particular Characteristics of Infection: The Needle Hides in the Hay Stack. Gastroenterology, 2018, 154, 20-22.	0.6	1
645	Enterovirus Inhibition by Hinged Aromatic Compounds with Polynuclei. Molecules, 2020, 25, 3821.	1.7	1
646	Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Early mechanistic studies. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110251.	0.3	1
647	Chemische Evolution antiviraler Wirkstoffe gegen Enterovirus D68 durch Proteintemplatâ€gesteuerte Knoevenagelreaktionen. Angewandte Chemie, 2021, 133, 13405-13413.	1.6	1
648	Structure–Activity Relationship Studies on Novel Antiviral Agents for Norovirus Infections. Microorganisms, 2021, 9, 1795.	1.6	1

#	Article	IF	CITATIONS
649	239 EMBRYOTOXICITY ASSAY FOR ANTIVIRAL COMPOUND BPIP (5-[(4-BROMOPHENYL)METHYL]-2-PHENYL-5H-IMIDAZO[4,5-c]PYRIDINE) IN BOVINE IN VITRO-PRODUCED EMBRYOS. Reproduction, Fertility and Development, 2007, 19, 235.	0.1	1
650	In silico development of a novel putative inhibitor of the 3C protease of Coxsackievirus B3 with a benzene sulfonamide skeleton. Journal of Pharmaceutical Chemistry, 2017, 4, 25-34.	0.2	1
651	Itraconazole for COVID-19: Preclinical Studies and a Proof-of-Concept Pilot Clinical Study. SSRN Electronic Journal, 0, , .	0.4	1
652	Infectious Virus Yield Assay for Hepatitis E Virus. Bio-protocol, 2014, 4, .	0.2	1
653	Luminescence-based Antiviral Assay for Hepatitis E Virus. Bio-protocol, 2014, 4, .	0.2	1
654	Assessing the Efficacy of Small Molecule Inhibitors in a Mouse Model of Persistent Norovirus Infection. Bio-protocol, 2018, 8, e2831.	0.2	1
655	Restriction of Viral Replication, Rather than T Cell Immunopathology, Drives Lethality in Murine Norovirus CR6-Infected STAT1-Deficient Mice. Journal of Virology, 2022, 96, jvi0206521.	1.5	1
656	New inhibitors of cytomegalovirus replication: in vitro evaluation, mechanism of action, and in vivo activity. Verhandelingen - Koninklijke Academie Voor Geneeskunde Van België, 1994, 56, 561-92.	0.2	1
657	Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. European Journal of Medicinal Chemistry, 2022, 237, 114414.	2.6	1
658	Mycophenolate Mofetil markedly enhances the antiviral activity of acyclovir, ganciclovir and penciclovir against herpes simplex virus (wild type and TKâ^' strains) and human cytomegalovirus. Antiviral Research, 1997, 34, A47.	1.9	0
659	Synthesis and antiviral evaluation of benzyl-substituted thiopurine and tiazofurin derivatives. Antiviral Research, 1997, 34, A55.	1.9	0
660	Antiviral activity of a novel compound P-4018 against different strains of herpes simplex virus in vitro and in vivo. Antiviral Research, 1997, 34, A76.	1.9	0
661	Inhibitory effect of 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) on hepatitis B virus replication in vitro. Journal of Hepatology, 1998, 28, 101.	1.8	0
662	The influences of immunosuppressive agents on HBV replication in vitro. Journal of Hepatology, 1998, 28, 102.	1.8	0
663	Differential anti-hepatitis B virus activity in vitro of three potent of inosine monophosphate dehydrogenase inhibitors: mycophenolic acid (MPA), 5-ethynyl-1-Î2-d-ribofuranosyli-midazole-4-carboxamide (EICAR) and ribavirin. Journal of Hepatology, 1998, 28. 103.	1.8	0
664	Spiro[pyrrolidine-2,2′-adamantanes]: Synthesis, Antiinfluenza Virus Activity and Conformational Properties ChemInform, 2003, 34, no.	0.1	0
665	Non-Nucleoside Inhibitors of HCMV Replication. , 2003, 24, 171-181.		0
666	Conservation of the pentanucleotide motif at the top of the yellow fever virus 17D 3′ stem–loop structure is not required for replication. Journal of General Virology, 2007, 88, 2361-2361.	1.3	0

#	Article	IF	CITATIONS
667	Reply:. Hepatology, 2010, 51, 345-345.	3.6	0
668	789 PRECLINICAL CHARACTERIZATION OF NOVEL CYCLOPHILIN INHIBITORS BASED ON THE POLYKETIDE, SANGLIFEHRIN. Journal of Hepatology, 2011, 54, S317.	1.8	0
669	124 HEPATOCYTES DERIVED FROM HUMAN PLURIPOTENT STEM CELLS PERMIT COMPLETE REPLICATION OF THE HEPATITIS C VIRUS. Journal of Hepatology, 2012, 56, S54-S55.	1.8	0
670	705 Stimulation of Angiogenesis by Hepatitis C Virus (HCV) Non-structural Proteins. European Journal of Cancer, 2012, 48, S167.	1.3	0
671	Erratum to "Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus―[J Hepatol 2012;57:246–251]. Journal of Hepatology, 2013, 58, 199-200.	1.8	0
672	1194 SYNERGISTIC COMBINATIONS OF ENTRY INHIBITORS WITH DACLATASVIR OR SOFOSBUVIR FOR PREVENTION AND TREATMENT OF CHRONIC HEPATITIS C. Journal of Hepatology, 2013, 58, S486.	1.8	0
673	O118 A MUTATION IN THE HEPATITIS E VIRUS POLYMERASE ASSOCIATED WITH RIBAVIRIN TREATMENT FAILURE HAS A REPLICATION ADVANTAGE IN VITRO. Journal of Hepatology, 2014, 60, S49-S50.	1.8	0
674	P212 STEM CELL-DERIVED HEPATOCYTES AS A NOVEL IN VITRO MODEL TO STUDY HEPATOTROPIC VIRUSES. Journal of Hepatology, 2014, 60, S136.	1.8	0
675	P0692 : PKC/AP-1 signaling drives transcription of interferon-stimulated genes and exerts potent antiviral activity against hepatitis C and E viruses. Journal of Hepatology, 2015, 62, S581-S582.	1.8	0
676	Identification and Analysis of Antiviral Compounds Against Poliovirus. Methods in Molecular Biology, 2016, 1387, 325-338.	0.4	0
677	PKCA/AP-1 Drives Transcription of Interferon-Stimulated Genes and Mediates Cell-Autonomous Defense against Hepatitis E Virus. Journal of Hepatology, 2016, 64, S529.	1.8	0
678	Reply. Gastroenterology, 2016, 150, 1690-1691.	0.6	0
679	Effect of hepatitis E virus infection on the human hepatic innate immune response in human liver chimeric mice. Journal of Hepatology, 2017, 66, S246.	1.8	0
680	Hepatitis E virus replication and interferonresponse in human placental-derived cells. Journal of Hepatology, 2018, 68, S786.	1.8	0
681	Rational design of antiviral drug combinations based on equipotency using HCV subgenomic replicon as an in vitro model. Antiviral Research, 2018, 149, 150-153.	1.9	0
682	F-102 Antivirals, a lot has been achieved, yet a long way to go. Journal of Acquired Immune Deficiency Syndromes (1999), 2019, 81, 43-43.	0.9	0
683	Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals, 2021, 14, 1006.	1.7	0

#	Article	IF	CITATIONS
685	Chikungunya virus resistant to the antiviral favipiravir is severely attenuated in mosquitoes. Access Microbiology, 2019, 1, .	0.2	0
686	A novel class of small molecule inhibitors targeting the chikungunya virus capping machinery with a high barrier to resistance. Access Microbiology, 2019, 1, .	0.2	0
687	Title is missing!. , 2020, 18, e3000904.		0
688	Title is missing!. , 2020, 18, e3000904.		0
689	Title is missing!. , 2020, 18, e3000904.		0
690	Title is missing!. , 2020, 18, e3000904.		0
691	Title is missing!. , 2020, 18, e3000904.		0
692	Title is missing!. , 2020, 18, e3000904.		0
693	Computer-Aided Design and Synthesis of (Functionalized quinazoline)–(α-substituted) Tj ETQq1 1 0.784314 rj Sciences, 2022, 23, 7646.	gBT /Overl 1.8	lock 10 Tf 50 O