Graham F Medley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicted Impact of COVID-19 on Neglected Tropical Disease Programs and the Opportunity for Innovation. Clinical Infectious Diseases, 2021, 72, 1463-1466.	5.8	62
2	Costs and outcomes of active and passive case detection for visceral leishmaniasis (Kala-Azar) to inform elimination strategies in Bihar, India. PLoS Neglected Tropical Diseases, 2021, 15, e0009129.	3.0	2
3	Infection patterns of endemic human coronaviruses in rural households in coastal Kenya. Wellcome Open Research, 2021, 6, 27.	1.8	9
4	Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health, The, 2021, 6, e175-e183.	10.0	156
5	Modeling the Interruption of the Transmission of Soil-Transmitted Helminths Infections in Kenya: Modeling Deworming, Water, and Sanitation Impacts. Frontiers in Public Health, 2021, 9, 637866.	2.7	2
6	Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200266.	4.0	12
7	Engagement and adherence trade-offs for SARS-CoV-2 contact tracing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200270.	4.0	12
8	Using a household-structured branching process to analyse contact tracing in the SARS-CoV-2 pandemic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200267.	4.0	27
9	The population attributable fraction of cases due to gatherings and groups with relevance to COVID-19 mitigation strategies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200273.	4.0	8
10	Segmentation and shielding of the most vulnerable members of the population as elements of an exit strategy from COVID-19 lockdown. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200275.	4.0	15
11	Towards Evidence-based Control of Opisthorchis viverrini. Trends in Parasitology, 2021, 37, 370-380.	3.3	22
12	Optimizing time-limited non-pharmaceutical interventions for COVID-19 outbreak control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200282.	4.0	13
13	Dynamics of SARS-CoV-2 with waning immunity in the UK population. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200274.	4.0	31
14	SARS-CoV-2 antigen testing: weighing the false positives against the costs of failing to control transmission. Lancet Respiratory Medicine,the, 2021, 9, 685-687.	10.7	14
15	What Can Modeling Tell Us About Sustainable End Points for Neglected Tropical Diseases?. Clinical Infectious Diseases, 2021, 72, S129-S133.	5.8	5
16	Statistical Regression Model of Water, Sanitation, and Hygiene; Treatment Coverage; and Environmental Influences on School-Level Soil-Transmitted Helminths and Schistosome Prevalence in Kenya: Secondary Analysis of the National Deworming Program Data. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2251-2263.	1.4	8
17	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 2021, 5, 112.	1.1	4
18	Prevalence and Correlation Analysis of Soil-Transmitted Helminths Infections and Treatment Coverage for Preschool and School Aged Children in Kenya: Secondary Analysis of the National School Based Deworming Program Data. Frontiers in Public Health, 2021, 9, 645522.	2.7	5

#	Article	IF	CITATIONS
19	The potential health and economic value of SARS-CoV-2 vaccination alongside physical distancing in the UK: a transmission model-based future scenario analysis and economic evaluation. Lancet Infectious Diseases, The, 2021, 21, 962-974.	9.1	117
20	Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence. Nature Communications, 2021, 12, 5412.	12.8	41
21	Using choice experiments to improve equity in access to socially marketed HIV prevention products. Journal of Choice Modelling, 2021, 41, 100319.	2.3	3
22	Integrating epidemiological and genetic data with different sampling intensities into a dynamic model of respiratory syncytial virus transmission. Scientific Reports, 2021, 11, 1463.	3.3	8
23	SCHISTOX: An individual based model for the epidemiology and control of schistosomiasis. Infectious Disease Modelling, 2021, 6, 438-447.	1.9	9
24	Modelling costs of community-based HIV self-testing programmes in Southern Africa at scale: an econometric cost function analysis across five countries. BMJ Global Health, 2021, 6, .	4.7	0
25	Precautionary breaks: Planned, limited duration circuit breaks to control the prevalence of SARS-CoV2 and the burden of COVID-19 disease. Epidemics, 2021, 37, 100526.	3.0	8
26	Achieving Elimination as a Public Health Problem for Schistosoma mansoni and S. haematobium: When Is Community-Wide Treatment Required?. Journal of Infectious Diseases, 2020, 221, S525-S530.	4.0	26
27	A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. PLoS Neglected Tropical Diseases, 2020, 14, e0008422.	3.0	15
28	Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 2020, 26, 1616-1622.	30.7	191
29	Routine childhood immunisation during the COVID-19 pandemic in Africa: a benefit–risk analysis of health benefits versus excess risk of SARS-CoV-2 infection. The Lancet Global Health, 2020, 8, e1264-e1272.	6.3	265
30	Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health, The, 2020, 5, e375-e385.	10.0	730
31	Herd immunity confusion. Lancet, The, 2020, 396, 1634-1635.	13.7	5
32	Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post–kala-azar dermal leishmaniasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25742-25750.	7.1	19
33	Trachoma Prevalence After Discontinuation of Mass Azithromycin Distribution. Journal of Infectious Diseases, 2020, 221, S519-S524.	4.0	14
34	When, Who, and How to Sample: Designing Practical Surveillance for 7 Neglected Tropical Diseases as We Approach Elimination. Journal of Infectious Diseases, 2020, 221, S499-S502.	4.0	11
35	Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infectious Diseases, The, 2020, 20, 1151-1160.	9.1	710
36	Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. The Lancet Global Health, 2020, 8, e1003-e1017.	6.3	760

#	Article	IF	CITATIONS
37	Is modelling complexity always needed? Insights from modelling PrEP introduction in South Africa. Journal of Public Health, 2020, 42, e551-e560.	1.8	4
38	Tooling-up for infectious disease transmission modelling. Epidemics, 2020, 32, 100395.	3.0	9
39	Impact of Changes in Detection Effort on Control of Visceral Leishmaniasis in the Indian Subcontinent. Journal of Infectious Diseases, 2020, 221, S546-S553.	4.0	14
40	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	1.8	61
41	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	1.8	62
42	Individual and community-level benefits of PrEP in western Kenya and South Africa: Implications for population prioritization of PrEP provision. PLoS ONE, 2020, 15, e0244761.	2.5	10
43	Spatiotemporal and Socioeconomic Risk Factors for Dengue at the Province Level in Vietnam, 2013–2015: Clustering Analysis and Regression Model. Tropical Medicine and Infectious Disease, 2020, 5, 81.	2.3	8
44	The contribution of asymptomatic SARS-CoV-2 infections to transmission on the Diamond Princess cruise ship. ELife, 2020, 9, .	6.0	70
45	A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. , 2020, 14, e0008422.		0
46	A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. , 2020, 14, e0008422.		0
47	A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. , 2020, 14, e0008422.		Ο
48	A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. , 2020, 14, e0008422.		0
49	Title is missing!. , 2020, 15, e0244761.		0
50	Title is missing!. , 2020, 15, e0244761.		0
51	Title is missing!. , 2020, 15, e0244761.		0
52	Title is missing!. , 2020, 15, e0244761.		0
53	Title is missing!. , 2020, 15, e0244761.		0
54	Title is missing!. , 2020, 15, e0244761.		0

#	Article	IF	CITATIONS
55	Guidelines for multi-model comparisons of the impact of infectious disease interventions. BMC Medicine, 2019, 17, 163.	5.5	39
56	Genomic analysis of respiratory syncytial virus infections in households and utility in inferring who infects the infant. Scientific Reports, 2019, 9, 10076.	3.3	19
57	Modeling household dynamics on Respiratory Syncytial Virus (RSV). PLoS ONE, 2019, 14, e0219323.	2.5	7
58	A Population Dynamic Model to Assess the Diabetes Screening and Reporting Programs and Project the Burden of Undiagnosed Diabetes in Thailand. International Journal of Environmental Research and Public Health, 2019, 16, 2207.	2.6	8
59	Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission. Parasites and Vectors, 2019, 12, 437.	2.5	16
60	Assessing the cost-effectiveness of HPV vaccination strategies for adolescent girls and boys in the UK. BMC Infectious Diseases, 2019, 19, 552.	2.9	38
61	Modelling population dynamics and seasonal movement to assess and predict the burden of melioidosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007380.	3.0	6
62	An Intensive, Active Surveillance Reveals Continuous Invasion and High Diversity of Rhinovirus in Households. Journal of Infectious Diseases, 2019, 219, 1049-1057.	4.0	15
63	Model-based estimates of transmission of respiratory syncytial virus within households. Epidemics, 2019, 27, 1-11.	3.0	25
64	Continuous Invasion by Respiratory Viruses Observed in Rural Households During a Respiratory Syncytial Virus Seasonal Outbreak in Coastal Kenya. Clinical Infectious Diseases, 2018, 67, 1559-1567.	5.8	26
65	Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indian subcontinent: A review and analysis of data from diagnostic and epidemiological studies. PLoS Neglected Tropical Diseases, 2018, 12, e0006803.	3.0	26
66	A33â€,Respiratory syncytial virus group B evolutionary trends in the attachment (G) glycoprotein in Kilifi, Kenya, 2003–2015. Virus Evolution, 2018, 4, .	4.9	0
67	The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh. PLoS Neglected Tropical Diseases, 2018, 12, e0006453.	3.0	23
68	The design of schistosomiasis monitoring and evaluation programmes: The importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2018, 12, e0006717.	3.0	44
69	Policy Lessons From Quantitative Modeling of Leprosy. Clinical Infectious Diseases, 2018, 66, S281-S285.	5.8	14
70	Policy Recommendations From Transmission Modeling for the Elimination of Visceral Leishmaniasis in the Indian Subcontinent. Clinical Infectious Diseases, 2018, 66, S301-S308.	5.8	34
71	Diagnostic tools for soil-transmitted helminths control and elimination programs: A pathway for diagnostic product development. PLoS Neglected Tropical Diseases, 2018, 12, e0006213.	3.0	46
72	Forecasting the new case detection rate of leprosy in four states of Brazil: A comparison of modelling approaches. Epidemics, 2017, 18, 92-100.	3.0	15

#	Article	IF	CITATIONS
73	Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models. Epidemics, 2017, 18, 67-80.	3.0	49
74	Learning from multi-model comparisons: Collaboration leads to insights, but limitations remain. Epidemics, 2017, 18, 1-3.	3.0	22
75	When an emerging disease becomes endemic. Science, 2017, 357, 156-158.	12.6	29
76	Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evolution, 2017, 3, vex006.	4.9	26
77	Variations in visceral leishmaniasis burden, mortality and the pathway to care within Bihar, India. Parasites and Vectors, 2017, 10, 601.	2.5	38
78	Within-Flock Population Dynamics of Dichelobacter nodosus. Frontiers in Veterinary Science, 2017, 4, 58.	2.2	9
79	A26 Transmission patterns and evolution of RSV in a community outbreak identified by genomic analysis. Virus Evolution, 2017, 3, .	4.9	3
80	Interpreting data in policy & control: The case of leprosy. Indian Journal of Medical Research, 2017, 145, 1.	1.0	3
81	The Role of More Sensitive Helminth Diagnostics in Mass Drug Administration Campaigns. Advances in Parasitology, 2016, 94, 343-392.	3.2	32
82	End TB strategy: the need to reduce risk inequalities. BMC Infectious Diseases, 2016, 16, 132.	2.9	18
83	Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasites and Vectors, 2016, 9, 25.	2.5	55
84	Molecular Evolutionary Dynamics of Respiratory Syncytial Virus Group A in Recurrent Epidemics in Coastal Kenya. Journal of Virology, 2016, 90, 4990-5002.	3.4	32
85	Progress in the Mathematical Modelling of Visceral Leishmaniasis. Advances in Parasitology, 2016, 94, 49-131.	3.2	25
86	Quantification and determinants of the amount of respiratory syncytial virus (RSV) shed using real time PCR data from a longitudinal household study. Wellcome Open Research, 2016, 1, 27.	1.8	13
87	Health-seeking behaviour, diagnostics and transmission dynamics in the control of visceral leishmaniasis in the Indian subcontinent. Nature, 2015, 528, S102-S108.	27.8	62
88	Infectious disease and health systems modelling for local decision making to control neglected tropical diseases. BMC Proceedings, 2015, 9, S6.	1.6	15
89	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	2.5	80
90	Back-calculating the incidence of infection of leprosy in a Bayesian framework. Parasites and Vectors, 2015, 8, 534.	2.5	13

#	Article	IF	CITATIONS
91	Frequent Asymptomatic Respiratory Syncytial Virus Infections During an Epidemic in a Rural Kenyan Household Cohort. Journal of Infectious Diseases, 2015, 212, 1711-1718.	4.0	71
92	Uniting mathematics and biology for control of visceral leishmaniasis. Trends in Parasitology, 2015, 31, 251-259.	3.3	33
93	Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding. Epidemiology and Infection, 2015, 143, 804-812.	2.1	75
94	Successive Respiratory Syncytial Virus Epidemics in Local Populations Arise from Multiple Variant Introductions, Providing Insights into Virus Persistence. Journal of Virology, 2015, 89, 11630-11642.	3.4	37
95	MDA helminth control: more questions than answers. The Lancet Clobal Health, 2015, 3, e583-e584.	6.3	5
96	Quantification of the natural history of visceral leishmaniasis and consequences for control. Parasites and Vectors, 2015, 8, 521.	2.5	41
97	Vaccine Induced Herd Immunity for Control of Respiratory Syncytial Virus Disease in a Low-Income Country Setting. PLoS ONE, 2015, 10, e0138018.	2.5	49
98	Quantifying Age-Related Rates of Social Contact Using Diaries in a Rural Coastal Population of Kenya. PLoS ONE, 2014, 9, e104786.	2.5	117
99	Research priorities for elimination of visceral leishmaniasis. The Lancet Global Health, 2014, 2, e683-e684.	6.3	36
100	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	4.7	135
101	A Missing Dimension in Measures of Vaccination Impacts. PLoS Pathogens, 2014, 10, e1003849.	4.7	54
102	The Source of Respiratory Syncytial Virus Infection In Infants: A Household Cohort Study In Rural Kenya. Journal of Infectious Diseases, 2014, 209, 1685-1692.	4.0	118
103	Matching patients to an intervention for back pain: classifying patients using a latent class approach. Journal of Evaluation in Clinical Practice, 2014, 20, 544-550.	1.8	10
104	A longitudinal study of the role of Dichelobacter nodosus and Fusobacterium necrophorum load in initiation and severity of footrot in sheep. Preventive Veterinary Medicine, 2014, 115, 48-55.	1.9	76
105	Dynamics and impact of footrot and climate on hoof horn length in 50 ewes from one farm over a period of 10 months. Veterinary Journal, 2014, 201, 295-301.	1.7	30
106	Multiple locus VNTR analysis highlights that geographical clustering and distribution of Dichelobacter nodosus, the causal agent of footrot in sheep, correlates with inter-country movements. Infection, Genetics and Evolution, 2014, 22, 273-279.	2.3	11
107	Identification of group <scp>B</scp> respiratory syncytial viruses that lack the 60â€nucleotide duplication after six consecutive epidemics of total <scp>BA</scp> dominance at coastal <scp>K</scp> enya. Influenza and Other Respiratory Viruses, 2013, 7, 1008-1012.	3.4	19
108	Factors associated with herd restriction and de-restriction with bovine tuberculosis in British cattle herds. Preventive Veterinary Medicine, 2013, 111, 31-41.	1.9	2

#	Article	IF	CITATIONS
109	The interaction of host genetics and disease processes in chronic livestock disease: A simulation model of ovine footrot. Preventive Veterinary Medicine, 2013, 108, 294-303.	1.9	6
110	Enhancing the sensitivity of tests for bovine TB. Veterinary Record, 2013, 172, 96-97.	0.3	2
111	Group- and Genotype-Specific Neutralizing Antibody Responses Against Respiratory Syncytial Virus in Infants and Young Children With Severe Pneumonia. Journal of Infectious Diseases, 2013, 207, 489-492.	4.0	33
112	Kinetics of the Neutralizing Antibody Response to Respiratory Syncytial Virus Infections in a Birth Cohort. Journal of Medical Virology, 2013, 85, 2020-2025.	5.0	37
113	Cenetic Relatedness of Infecting and Reinfecting Respiratory Syncytial Virus Strains Identified in a Birth Cohort From Rural Kenya. Journal of Infectious Diseases, 2012, 206, 1532-1541.	4.0	71
114	The Natural History of Respiratory Syncytial Virus in a Birth Cohort: The Influence of Age and Previous Infection on Reinfection and Disease. American Journal of Epidemiology, 2012, 176, 794-802.	3.4	108
115	A meta-analysis of the effect of dose and age at exposure on shedding of <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i> (MAP) in experimentally infected calves and cows. Epidemiology and Infection, 2012, 140, 231-246.	2.1	45
116	Modelling the transmission dynamics of <i>Theileria annulata</i> : model structure and validation for the Turkish context. Parasitology, 2012, 139, 441-453.	1.5	8
117	Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in grazing South African goats. Veterinary Parasitology, 2012, 190, 159-166.	1.8	9
118	Patterns of delayed detection and persistence of bovine tuberculosis in confirmed and unconfirmed herd breakdowns in cattle and cattle herds in Great Britain. Preventive Veterinary Medicine, 2012, 106, 266-274.	1.9	13
119	Impact of Imperfect Test Sensitivity on Determining Risk Factors: The Case of Bovine Tuberculosis. PLoS ONE, 2012, 7, e43116.	2.5	5
120	Tactical treatment with copper oxide wire particles and symptomatic levamisole treatment using the FAMACHA© system in indigenous goats in South Africa. Veterinary Parasitology, 2012, 184, 48-58.	1.8	7
121	Infectious diseases of animals and plants: an interdisciplinary approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1933-1942.	4.0	77
122	A Preliminary Study of Genetic Factors That Influence Susceptibility to Bovine Tuberculosis in the British Cattle Herd. PLoS ONE, 2011, 6, e18806.	2.5	28
123	Ovine pedomics: the first study of the ovine foot 16S rRNA-based microbiome. ISME Journal, 2011, 5, 1426-1437.	9.8	46
124	Detection and diversity of a putative novel heterogeneous polymorphic proline-glycine repeat (Pgr) protein in the footrot pathogen Dichelobacter nodosus. Veterinary Microbiology, 2011, 147, 358-366.	1.9	13
125	Endemic cattle diseases: comparative epidemiology and governance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1975-1986.	4.0	43
126	Diagnosing the Individual to Control the Epidemic. Science Translational Medicine, 2011, 3, 82ps18.	12.4	1

#	Article	IF	CITATIONS
127	A stochastic mathematical model of the within-herd transmission dynamics of porcine reproductive and respiratory syndrome virus (PRRSV): Fade-out and persistence. Preventive Veterinary Medicine, 2010, 93, 248-257.	1.9	43
128	The control of Corynebacterium pseudotuberculosis infection in sheep flocks: A mathematical model of the impact of vaccination, serological testing, clinical examination and lancing of abscesses. Preventive Veterinary Medicine, 2010, 95, 115-126.	1.9	5
129	Risk factors for herd breakdown with bovine tuberculosis in 148 cattle herds in the south west of England. Preventive Veterinary Medicine, 2010, 95, 224-230.	1.9	43
130	A cohort study of post-weaning multisystemic wasting syndrome and PCV2 in 178 pigs from birth to 14 weeks on a single farm in England. Preventive Veterinary Medicine, 2010, 97, 100-106.	1.9	10
131	Factors associated with changes of state of foot conformation and lameness in a flock of sheep. Preventive Veterinary Medicine, 2010, 97, 237-244.	1.9	50
132	Duration of shedding of respiratory syncytial virus in a community study of Kenyan children. BMC Infectious Diseases, 2010, 10, 15.	2.9	46
133	Intrapatient Variation of the Respiratory Syncytial Virus Attachment Protein Gene. Journal of Virology, 2010, 84, 10425-10428.	3.4	13
134	Modelling the dynamics of intramammary <i>E. coli</i> infections in dairy cows: understanding mechanisms that distinguish transient from persistent infections. Veterinary Research, 2010, 41, 13.	3.0	23
135	Management interventions in dairy herds: Exploring within herd uncertainty using an integrated Bayesian model. Veterinary Research, 2010, 41, 22.	3.0	5
136	The Level and Duration of RSV-Specific Maternal IgG in Infants in Kilifi Kenya. PLoS ONE, 2009, 4, e8088.	2.5	134
137	Incidence and Severity of Respiratory Syncytial Virus Pneumonia in Rural Kenyan Children Identified through Hospital Surveillance. Clinical Infectious Diseases, 2009, 49, 1341-1349.	5.8	135
138	The relationship between porcine circovirus 2 antigen score and antibody titre and histology of lymph nodes in 375 euthanased sick and healthy pigs from 113 British pig farms with and without postweaning multisystemic wasting syndrome. Preventive Veterinary Medicine, 2009, 88, 213-219.	1.9	13
139	Seroprevalence and epidemiological characteristics of Mycobacterium avium subsp. paratuberculosis on 114 cattle farms in south west England. Preventive Veterinary Medicine, 2009, 89, 102-109.	1.9	43
140	Bayesian analysis of a mastitis control plan to investigate the influence of veterinary prior beliefs on clinical interpretation. Preventive Veterinary Medicine, 2009, 91, 209-217.	1.9	2
141	Herd and individual animal risks associated with bovine tuberculosis skin test positivity in cattle in herds in south west England. Preventive Veterinary Medicine, 2009, 92, 188-198.	1.9	27
142	A four year longitudinal sero-epidemiological study of bovine herpesvirus type-1 (BHV-1) in adult cattle in 107 unvaccinated herds in south west England. BMC Veterinary Research, 2009, 5, 5.	1.9	46
143	The potential to control Haemonchus contortus in indigenous South African goats with copper oxide wire particles. Veterinary Parasitology, 2009, 162, 306-313.	1.8	25
144	Does Viral Diversity Matter?. Science, 2009, 325, 274-275.	12.6	4

#	Article	IF	CITATIONS
145	Use of posterior predictive assessments to evaluate model fit in multilevel logistic regression. Veterinary Research, 2009, 40, 30.	3.0	22
146	A four year longitudinal sero-epidemiology study of Neospora caninum in adult cattle from 114 cattle herds in south west England: Associations with age, herd and dam-offspring pairs. BMC Veterinary Research, 2008, 4, 35.	1.9	16
147	Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: farm characteristics associated with heterogeneity in seroprevalence. BMC Veterinary Research, 2008, 4, 48.	1.9	32
148	Factors associated with increased risk of progression to respiratory syncytial virusâ€associated pneumonia in young Kenyan children*. Tropical Medicine and International Health, 2008, 13, 914-926.	2.3	55
149	Risks for bovine tuberculosis in British cattle farms restocked after the foot and mouth disease epidemic of 2001. Preventive Veterinary Medicine, 2008, 84, 85-93.	1.9	64
150	Cow, Farm, and Herd Management Factors in the Dry Period Associated with Raised Somatic Cell Counts in Early Lactation. Journal of Dairy Science, 2008, 91, 1403-1415.	3.4	60
151	Rotavirus within day care centres in Oxfordshire, UK: characterization of partial immunity. Journal of the Royal Society Interface, 2008, 5, 1481-1490.	3.4	19
152	An Augmented Data Method for the Analysis of Nosocomial Infection Data. American Journal of Epidemiology, 2008, 168, 548-557.	3.4	52
153	Identifying Infections with Respiratory Syncytial Virus by Using Specific Immunoglobulin G (IgG) and IgA Enzyme-Linked Immunosorbent Assays with Oral-Fluid Samples. Journal of Clinical Microbiology, 2008, 46, 1659-1662.	3.9	13
154	Respiratory Syncytial Virus Infection and Disease in Infants and Young Children Observed from Birth in Kilifi District, Kenya. Clinical Infectious Diseases, 2008, 46, 50-57.	5.8	140
155	Spatiotemporal patterns and risks of herd breakdowns in pigs with postweaning multisystemic wasting syndrome. Veterinary Record, 2007, 160, 751-762.	0.3	38
156	The ORION statement: guidelines for transparent reporting of Outbreak Reports and Intervention studies Of Nosocomial infection. Journal of Antimicrobial Chemotherapy, 2007, 59, 833-840.	3.0	104
157	Screening strategies in surveillance and control of methicillin-resistant Staphylococcus aureus (MRSA). Epidemiology and Infection, 2007, 135, 328-342.	2.1	22
158	Mathematical model of the antibody response to hepatitis B vaccines: Implications for reduced schedules. Vaccine, 2007, 25, 3705-3712.	3.8	17
159	Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 2007, 209, 222-239.	1.9	73
160	Cow, Farm, and Management Factors During the Dry Period that Determine the Rate of Clinical Mastitis After Calving. Journal of Dairy Science, 2007, 90, 3764-3776.	3.4	134
161	The ORION statement: guidelines for transparent reporting of outbreak reports and intervention studies of nosocomial infection. Lancet Infectious Diseases, The, 2007, 7, 282-288.	9.1	236
162	Comparison of strainâ€specific antibody responses during primary and secondary infections with respiratory syncytial virus. Journal of Medical Virology, 2007, 79, 1943-1950.	5.0	25

#	Article	IF	CITATIONS
163	Parasite transmission in a migratory multiple host system. Ecological Modelling, 2007, 200, 511-520.	2.5	53
164	Meticillin-resistant Staphylococcus aureus (MRSA) in hospitals and the community: model predictions based on the UK situation. Journal of Hospital Infection, 2007, 65, 93-99.	2.9	32
165	Looking after the individual to reduce disease in the flock: A binomial mixed effects model investigating the impact of individual sheep management of footrot and interdigital dermatitis in a prospective longitudinal study on one farm. Preventive Veterinary Medicine, 2007, 78, 172-178.	1.9	50
166	Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions. Journal of Theoretical Biology, 2007, 248, 608-617.	1.7	43
167	Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biological Conservation, 2006, 131, 244-254.	4.1	64
168	Stochastic dynamics of immunity in small populations: A general framework. Mathematical Biosciences, 2006, 200, 28-43.	1.9	5
169	Agricultural restructuring and gastrointestinal parasitism in domestic ruminants on the rangelands of Kazakhstan. Veterinary Parasitology, 2006, 139, 180-191.	1.8	23
170	The transmission and control of mastitis in dairy cows: A theoretical approach. Preventive Veterinary Medicine, 2006, 74, 67-83.	1.9	18
171	Molecular Analysis of Respiratory Syncytial Virus Reinfections in Infants from Coastal Kenya. Journal of Infectious Diseases, 2006, 193, 59-67.	4.0	50
172	The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: seasonality and cross-protection. Epidemiology and Infection, 2005, 133, 279-289.	2.1	109
173	The reinfection threshold. Journal of Theoretical Biology, 2005, 236, 111-113.	1.7	65
174	Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence. Journal of Mathematical Biology, 2005, 51, 414-430.	1.9	36
175	Prevalence and associations between bacterial isolates from dry mammary glands of dairy cows. Veterinary Record, 2005, 156, 71-77.	0.3	44
176	Multilocus Sequence Typing of Staphylococcus aureus Isolated from High-Somatic-Cell-Count Cows and the Environment of an Organic Dairy Farm in the United Kingdom. Journal of Clinical Microbiology, 2005, 43, 4731-4736.	3.9	39
177	HELMINTHS OF SAIGA ANTELOPE IN KAZAKHSTAN: IMPLICATIONS FOR CONSERVATION AND LIVESTOCK PRODUCTION. Journal of Wildlife Diseases, 2005, 41, 149-162.	0.8	42
178	Multilocus Sequence Typing of Intercontinental Bovine Staphylococcus aureus Isolates. Journal of Clinical Microbiology, 2005, 43, 4737-4743.	3.9	158
179	Respiratory Syncytial Virus Epidemiology in a Birth Cohort from Kilifi District, Kenya: Infection during the First Year of Life. Journal of Infectious Diseases, 2004, 190, 1828-1832.	4.0	79
180	The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 617-623.	2.6	84

#	Article	IF	CITATIONS
181	Methicillin-resistant Staphylococcus aureus in hospitals and the community: Stealth dynamics and control catastrophes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10223-10228.	7.1	266
182	The use of Markov chain Monte Carlo for analysis of correlated binary data: patterns of somatic cells in milk and the risk of clinical mastitis in dairy cows. Preventive Veterinary Medicine, 2004, 64, 157-174.	1.9	51
183	Molecular epidemiology of respiratory syncytial virus in Kilifi district, Kenya. Journal of Medical Virology, 2004, 74, 344-354.	5.0	63
184	Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. Journal of Theoretical Biology, 2004, 228, 539-549.	1.7	141
185	Ruminating on complexity: macroparasites of wildlife and livestock. Trends in Ecology and Evolution, 2004, 19, 181-188.	8.7	91
186	Somatic Cell Count Distributions During Lactation Predict Clinical Mastitis. Journal of Dairy Science, 2004, 87, 1256-1264.	3.4	75
187	Estimating the transmission parameters of pneumococcal carriage in households. Epidemiology and Infection, 2004, 132, 433-441.	2.1	127
188	Serological survey of anti-group A rotavirus IgM in UK adults. Epidemiology and Infection, 2003, 131, 719-726.	2.1	21
189	On the determinants of population structure in antigenically diverse pathogens. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 227-233.	2.6	68
190	The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows with postmilking teat disinfection. Mathematical Biosciences, 2002, 180, 275-291.	1.9	6
191	Mathematical modelling of the foot and mouth disease epidemic of 2001: strengths and weaknesses. Research in Veterinary Science, 2002, 73, 201-205.	1.9	41
192	Influence of Dry Period Bacterial Intramammary Infection on Clinical Mastitis in Dairy Cows. Journal of Dairy Science, 2002, 85, 2589-2599.	3.4	161
193	Dynamics of Multiple Strains of Infectious Agents Coupled by Cross-Immunity: A Comparison of Models. The IMA Volumes in Mathematics and Its Applications, 2002, , 171-191.	0.5	11
194	The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in dairy cows. Mathematical Biosciences, 2001, 174, 77-90.	1.9	21
195	Effects of insulin and glucocorticoids on the leptin system are mediated through free leptin. Clinical Endocrinology, 2001, 54, 533-539.	2.4	33
196	Population-based evaluation of the Ehrlichia ruminantium MAP 1B indirect ELISA. Experimental and Applied Acarology, 2001, 25, 881-897.	1.6	10
197	Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nature Medicine, 2001, 7, 619-624.	30.7	149
198	EPIDEMIOLOGY: Predicting the Unpredictable. Science, 2001, 294, 1663-1664.	12.6	20

#	Article	IF	CITATIONS
199	An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Preventive Veterinary Medicine, 1999, 39, 173-189.	1.9	67
200	The control of heartwater on large-scale commercial and smallholder farms in Zimbabwe. Preventive Veterinary Medicine, 1999, 39, 191-210.	1.9	19
201	Predicting the effect of vaccination on the transmission dynamics of heartwater (Cowdria) Tj ETQq1 1 0.78431	4 rg <u>B</u> Ţ /Ov	verlock 10 Tf 5
202	Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Statistics in Medicine, 1999, 18, 3263-3282.	1.6	174
203	Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. Journal of Hospital Infection, 1999, 43, 131-147.	2.9	141
204	Exposure of sows to Ascaris suum influences worm burden distributions in experimentally infected suckling piglets. Parasitology, 1999, 119, 509-520.	1.5	10
205	Prevalence of Cowdria ruminantium infection in Amblyomma hebraeum ticks from heartwater-endemic areas of Zimbabwe. Epidemiology and Infection, 1999, 123, 309-316.	2.1	17
206	Intestinal parasites in swine in the Nordic countries: multilevel modelling of Ascaris suum infections in relation to production factors. Parasitology, 1999, 119, 521-534.	1.5	27
207	Free Leptin, Bound Leptin, and Soluble Leptin Receptor in Normal and Diabetic Pregnancies. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 300-306.	3.6	37
208	Distributions of the vectors of heartwater, Amblyomma hebraeum and Amblyomma variegatum (Acari:) Tj ETQc	0 0 0 rgBT 1.6	Overlock 10
209	Seroepidemiological study of respiratory syncytial virus in São Paulo State, Brazil. , 1998, 55, 234-239.		46
210	Infection with group C rotavirus in a suburban community in Brazil. Tropical Medicine and International Health, 1998, 3, 891-895.	2.3	15
211	Investigating the epidemiology of heartwater (Cowdria ruminantium infection) by means of a transmission dynamics model. Parasitology, 1998, 117, 49-61.	1.5	43
212	Distribution of Ascaris suum in experimentally and naturally infected pigs and comparison with Ascaris lumbricoides infections in humans. Parasitology, 1998, 117, 589-596.	1.5	52
213	Vector competence of 7 rhipicephalid tick stocks in transmitting 2 Theileria parva parasite stocks from Kenya and Zimbabwe. Parasitology, 1998, 116, 539-545.	1.5	17
214	Seroepidemiology of group A rotavirus in suburban São Paulo, Brazil. Epidemiology and Infection, 1998, 120, 327-334.	2.1	11
215	Dynamic aspects of morbidity and acquired immunity in schistosomiasis control. Acta Tropica, 1996, 62, 105-117.	2.0	26
216	The design of immunisation programmes against hepatitis B virus in developing countries. , 1996, , 83-85.		1

#	Article	IF	CITATIONS
217	Invited Discussion. , 1996, , 189-190.		0
218	Conflicts between the individual and communities in treatment and control. , 1996, , 331-343.		2
219	The time to AIDS in a cohort of homosexual men. , 1996, , 485-487.		0
220	The transmission dynamics of hepatitis B in the UK: a mathematical model for evaluating costs and effectiveness of immunization programmes. Epidemiology and Infection, 1996, 116, 71-89.	2.1	82
221	THE TRANSMISSION DYNAMICS AND CONTROL OF HEPATITIS B VIRUS IN THE GAMBIA. , 1996, 15, 2215-2233.		103
222	Vaccination against hepatitis B virus in highly endemic areas: waning vaccine-induced immunity and the need for booster doses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1996, 90, 436-440.	1.8	27
223	Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areasr. Epidemiology and Infection, 1996, 117, 313-325.	2.1	150
224	Models for Infectious Human Diseases. , 1996, , .		37
225	Dynamic Models of Schistosomiasis Morbidity. American Journal of Tropical Medicine and Hygiene, 1996, 55, 52-62.	1.4	44
226	The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. Epidemiology and Infection, 1995, 115, 325-344.	2.1	78
227	Control of Ascaris infection by chemotherapy: which is the most cost-effective option?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1995, 89, 16-20.	1.8	34
228	Dynamics of malaria parasitaemia associated with febrile illness in children from a rural area of Madang, Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1994, 88, 191-197.	1.8	72
229	Relationship Between Prevalence and Intensity of Plasmodium Falciparum Infection in Natural Populations of Anopheles Mosquitoes. American Journal of Tropical Medicine and Hygiene, 1994, 51, 260-270.	1.4	54
230	Mathematical models of tick-borne disease transmission: Reply. Parasitology Today, 1993, 9, 292.	3.0	0
231	The treatment-free incubation period of AIDS in a cohort of homosexual men. Aids, 1993, 7, 231-240.	2.2	54
232	A new approach to morbidity risk assessment in hookworm endemic communities. Epidemiology and Infection, 1992, 108, 469-481.	2.1	92
233	Which comes first in host-parasite systems: Density dependence or parasite distribution?. Parasitology Today, 1992, 8, 321-322.	3.0	14
234	Epidemiology, HIV and drugs: mathematical models and data. Addiction, 1992, 87, 371-379.	3.3	25

#	Article	IF	CITATIONS
235	The epidemiology and population biology of Necator americanus infection in a rural community in Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1992, 86, 73-76.	1.8	58
236	The use of aids surveillance data for short-term prediction of aids cases in Madrid, Spain. European Journal of Epidemiology, 1991, 7, 349-357.	5.7	6
237	Epidemiology of HIV infection and AIDS. Aids, 1988, 2, S57-64.	2.2	34
238	Incubation period of AIDS in patients infected via blood transfusion. Nature, 1987, 328, 719-721.	27.8	281
239	A Preliminary Study of the Transmission Dynamics of the Human Immunodeficiency Virus (HIV), the Causative Agent of AIDS. Mathematical Medicine and Biology, 1986, 3, 229-263.	1.2	414
240	Density-dependent fecundity in Schistosoma mansoni infections in man. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1985, 79, 532-534.	1.8	72
241	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 0, 5, 239.	1.8	5
242	Quantification and determinants of the amount of respiratory syncytial virus (RSV) shed using real time PCR data from a longitudinal household study. Wellcome Open Research, 0, 1, 27.	1.8	7
243	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 0, 5, 112.	1.1	1