Cancer Genome Atlas Research Networl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409078/publications.pdf

Version: 2024-02-01

CANCER GENOME ATLAS

#	Article	IF	CITATIONS
1	Ferrous iron–activatable drug conjugate achieves potent MAPK blockade in <i>KRAS</i> -driven tumors. Journal of Experimental Medicine, 2022, 219, .	8.5	15
2	INHBA is a mediator of aggressive tumor behavior in HER2+ basal breast cancer. Breast Cancer Research, 2022, 24, 18.	5.0	4
3	Sensitivity to targeted therapy differs between HER2-amplified breast cancer cells harboring kinase and helical domain mutations in PIK3CA. Breast Cancer Research, 2021, 23, 81.	5.0	7
4	Crosstalk between invadopodia and the extracellular matrix. European Journal of Cell Biology, 2020, 99, 151122.	3.6	11
5	Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity. PLoS ONE, 2019, 14, e0205623.	2.5	17
6	CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion. Cancer Research, 2018, 78, 1657-1671.	0.9	97
7	The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations. Cell Systems, 2018, 6, 13-24.	6.2	327
8	Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems, 2018, 6, 329-342.e6.	6.2	72
9	Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Science Advances, 2018, 4, eaat7828.	10.3	203
10	Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nature Chemical Biology, 2018, 14, 768-777.	8.0	64
11	Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports, 2016, 6, 772-783.	4.8	8
12	Disentangling Multidimensional Spatio-Temporal Data into Their Common and Aberrant Responses. PLoS ONE, 2015, 10, e0121607.	2.5	1
13	Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease. PLoS ONE, 2015, 10, e0136407.	2.5	97
14	Interrogation of a Context-Specific Transcription Factor Network Identifies Novel Regulators of Pluripotency. Stem Cells, 2015, 33, 367-377.	3.2	32
15	Decoupling of the PI3K Pathway via Mutation Necessitates Combinatorial Treatment in HER2+ Breast Cancer. PLoS ONE, 2015, 10, e0133219.	2.5	19
16	Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach. PLoS ONE, 2015, 10, e0142846.	2.5	18
17	Causal network inference using biochemical kinetics. Bioinformatics, 2014, 30, i468-i474.	4.1	45
18	Expanding the Diversity of Imaging-Based RNAi Screen Applications Using Cell Spot Microarrays. Microarrays (Basel, Switzerland), 2013, 2, 97-114.	1.4	8

CANCER GENOME ATLAS

#	Article	IF	CITATIONS
19	The Transcription Factor ZNF217 Is a Prognostic Biomarker and Therapeutic Target during Breast Cancer Progression. Cancer Discovery, 2012, 2, 638-651.	9.4	61
20	Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib. Breast Cancer Research and Treatment, 2012, 135, 505-517.	2.5	69
21	A Central Role for RAF→MEK→ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2012, 2, 685-693.	9.4	264
22	Subtype and pathway specific responses to anticancer compounds in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2724-2729.	7.1	417
23	A Genetic Strategy for Single and Combinatorial Analysis of miRNA Function in Mammalian Hematopoietic Stem Cells. Stem Cells, 2010, 28, 287-296.	3.2	77
24	Breast cancer genomes—form and function. Current Opinion in Genetics and Development, 2010, 20, 4-14.	3.3	54
25	Identification and Validation of a Gene Expression Signature That Predicts Outcome in Adult Men With Germ Cell Tumors. Journal of Clinical Oncology, 2009, 27, 5240-5247.	1.6	70
26	Testicular mixed germ cell tumors: a morphological and immunohistochemical study using stem cell markers, OCT3/4, SOX2 and GDF3, with emphasis on morphologically difficult-to-classify areas. Modern Pathology, 2009, 22, 1066-1074.	5.5	85
27	Molecular events in germ cell tumours: linking chromosomeâ€12 gain, acquisition of pluripotency and response to cisplatin. BJU International, 2009, 104, 1334-1338.	2.5	27
28	In vivo differentiation and genomic evolution in adult male germ cell tumors. Genes Chromosomes and Cancer, 2008, 47, 43-55.	2.8	54
29	Constitutive Gene Expression Predisposes Morphogen-Mediated Cell Fate Responses of NT2/D1 and 27X-1 Human Embryonal Carcinoma Cells. Stem Cells, 2007, 25, 771-778.	3.2	12
30	Down-Regulation of Stem Cell Genes, Including Those in a 200-kb Gene Cluster at 12p13.31, Is Associated with In vivo Differentiation of Human Male Germ Cell Tumors. Cancer Research, 2006, 66, 820-827.	0.9	275
31	Transcriptional Program Associated with IFN-αResponse of Renal Cell Carcinoma. Journal of Interferon and Cytokine Research, 2006, 26, 156-170.	1.2	2
32	Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene, 2005, 24, 5101-5107.	5.9	57
33	Bladder Cancer Outcome and Subtype Classification by Gene Expression. Clinical Cancer Research, 2005, 11, 4044-4055.	7.0	303
34	Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer, 2004, 100, 2562-2572.	4.1	166
35	Cyclin D1 is necessary but not sufficient for anchorage-independent growth of rat mammary tumor cells and is associated with resistance of the Copenhagen rat to mammary carcinogenesis. Oncogene, 2003, 22, 3452-3462.	5.9	14
36	Resistance of Copenhagen rats to hepatocarcinogenesis does not involve T-cell immunity. Carcinogenesis, 2001, 22, 357-359.	2.8	7

#	Article	IF	CITATIONS
37	Resistance to mammary tumorigenesis in Copenhagen rats is associated with the loss of preneoplastic lesions. Carcinogenesis, 1999, 20, 221-227.	2.8	34
38	Resistance to chemically-induced mammary tumors in Copenhagen X nude- derived F2 athymic rats: evidence that T-cell immunity is not involved in Copenhagen resistance. Carcinogenesis, 1997, 18, 53-57.	2.8	14
39	Resistance of Copenhagen rats to chemical induction of glutathione S- transferase 7-7-positive liver foci. Carcinogenesis, 1997, 18, 1745-1750.	2.8	18