
Gerald Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated Atmospheric CO2 Modifies Mostly the Metabolic Active Rhizosphere Soil Microbiome in the Giessen FACE Experiment. Microbial Ecology, 2022, 83, 619-634.	2.8	9
2	Isotopic Techniques to Measure N2O, N2 and Their Sources. , 2021, , 213-301.		8
3	Effects of long-term CO2 enrichment on forage quality of extensively managed temperate grassland. Agriculture, Ecosystems and Environment, 2021, 312, 107347.	5.3	9
4	Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. Science of the Total Environment, 2021, 784, 147036.	8.0	12
5	Effects of Wood Hydraulic Properties on Water Use and Productivity of Tropical Rainforest Trees. Frontiers in Forests and Clobal Change, 2021, 3, .	2.3	11
6	Simulating Long-Term Development of Greenhouse Gas Emissions, Plant Biomass, and Soil Moisture of a Temperate Grassland Ecosystem under Elevated Atmospheric CO2. Agronomy, 2020, 10, 50.	3.0	11
7	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	14.0	67
8	Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllosphere of a long-term warming field experiment. FEMS Microbiology Ecology, 2020, 96, .	2.7	21
9	Grassland ecosystem services in a changing environment: The potential of hyperspectral monitoring. Remote Sensing of Environment, 2019, 232, 111273.	11.0	36
10	Metatranscriptomics reveals climate change effects on the rhizosphere microbiomes in European grassland. Soil Biology and Biochemistry, 2019, 138, 107604.	8.8	33
11	Impacts of longâ€ŧerm elevated atmospheric CO ₂ concentrations on communities of arbuscular mycorrhizal fungi. Molecular Ecology, 2019, 28, 3445-3458.	3.9	20
12	Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecological Engineering, 2019, 127, 547-560.	3.6	69
13	Explaining the doubling of N ₂ O emissions under elevated <scp>CO</scp> ₂ in the Giessen <scp>FACE</scp> via inâ€field ¹⁵ N tracing. Global Change Biology, 2018, 24, 3897-3910.	9.5	41
14	Biomass responses in a temperate European grassland through 17Âyears of elevated <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 3875-3885.	9.5	53
15	Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Scientific Reports, 2018, 8, 17758.	3.3	5
16	Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment. Frontiers in Microbiology, 2018, 9, 144.	3.5	76
17	Global Change Biology Introduction—FACEing the future conference. Global Change Biology, 2018, 24, 3873-3874.	9.5	0
18	Depth-dependent response of soil aggregates and soil organic carbon content to long-term elevated CO2 in a temperate grassland soil. Soil Biology and Biochemistry, 2018, 123, 145-154.	8.8	19

GERALD MOSER

#	Article	lF	CITATIONS
19	Degradation of Miscanthus × giganteus biochar, hydrochar and feedstock under the influence of disturbance events. Applied Soil Ecology, 2017, 113, 135-150.	4.3	8
20	Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture, Ecosystems and Environment, 2017, 237, 80-94.	5.3	231
21	Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change, 2017, 7, 137-141.	18.8	108
22	Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling. Frontiers in Microbiology, 2017, 8, 1976.	3.5	24
23	Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1318-1326.	1.7	11
24	Multiyear greenhouse gas balances at a rewetted temperate peatland. Global Change Biology, 2016, 22, 4080-4095.	9.5	78
25	Carbon dioxide fertilisation and supressed respiration induce enhanced spring biomass production in a mixed species temperate meadow exposed to moderate carbon dioxide enrichment. Functional Plant Biology, 2016, 43, 26.	2.1	28
26	To graze or not to graze? Four years greenhouse gas balances and vegetation composition from a drained and a rewetted organic soil under grassland. Agriculture, Ecosystems and Environment, 2016, 222, 156-170.	5.3	26
27	Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3345-3354.	1.7	30
28	Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4138-4147.	1.7	14
29	Responses of a Grassland Ecosystem to 17 Years of Free-air CO2 Enrichment. Procedia Environmental Sciences, 2015, 29, 158-159.	1.4	0
30	Permanent Managed Grassland at Future Climate Change: Is There a Connection between GHG Emission and Composition of Plant and Microbial Communities?. Procedia Environmental Sciences, 2015, 29, 156-157.	1.4	3
31	Increasing N2O Emissions Under Long-term (11 year) Free-air CO2 Enrichment Counterbalance Biomass Growth Stimulation: A Carbon Balance Approach. Procedia Environmental Sciences, 2015, 29, 168-170.	1.4	1
32	Positive feedback of elevated CO ₂ on soil respiration in late autumn and winter. Biogeosciences, 2015, 12, 1257-1269.	3.3	20
33	Is light interception of understorey species facilitated by light reflection from plant neighbours?. Plant Ecology and Diversity, 2015, 8, 1-12.	2.4	4
34	Microbial community shifts 2.6Âyears after top dressing of Miscanthus biochar, hydrochar and feedstock on a temperate grassland site. Plant and Soil, 2015, 397, 261-271.	3.7	23
35	Changes in macro―and micronutrient contents of grasses and forbs following <i><scp>M</scp>iscanthusÂxÂgiganteus</i> feedstock, hydrochar and biochar application to temperate grassland. Grass and Forage Science, 2015, 70, 582-599.	2.9	25
36	Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 2014, 20, 1481-1497.	9.5	49

GERALD MOSER

#	Article	IF	CITATIONS
37	Conversion of tropical moist forest into cacao agroforest: consequences for carbon pools and annual C sequestration. Agroforestry Systems, 2013, 87, 1173-1187.	2.0	38
38	The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect. Ecological Studies, 2013, , 117-139.	1.2	28
39	Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?. PLoS ONE, 2012, 7, e47192.	2.5	44
40	Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences, 2011, 8, 2179-2194.	3.3	38
41	Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology, 2011, 17, 2211-2226.	9.5	160
42	Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 2010, 79, 171-187.	2.0	86
43	Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Global Change Biology, 2010, 16, 1515-1530.	9.5	92
44	Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 2010, 37, 960-974.	3.0	121
45	Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarctic Science, 2010, 22, 691-702.	0.9	41
46	Biomass and productivity of fine and coarse roots in five tropical mountain forests stands along an altitudinal transect in southern Ecuador. Plant Ecology and Diversity, 2010, 3, 151-164.	2.4	20
47	Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 183-191.	2.7	85
48	Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 2009, 258, 1904-1912.	3.2	86
49	Altitudinal Changes in Stand Structure and Biomass Allocation of Tropical Mountain Forests in Relation to Microclimate and Soil Chemistry. Ecological Studies, 2008, , 229-242.	1.2	61
50	Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology, 2007, 8, 219-230.	2.7	210
51	Altitudinal Change in LAI and Stand Leaf Biomass in Tropical Montane Forests: a Transect Study in Ecuador and a Pan-Tropical Meta-Analysis. Ecosystems, 2007, 10, 924-935.	3.4	139
52	Plant Functional Types Differ in Their Long-term Nutrient Response to eCO2 in an Extensive Grassland. Ecosystems, 0, , 1.	3.4	4