
Armin Wisthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/24087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	4.9	520
2	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	47.7	417
3	Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6568-6575.	7.1	341
4	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	4.9	234
5	Boreal forest fire emissions in fresh Canadian smoke plumes: C ₁ -C ₁₀ volatile organic compounds (VOCs), CO ₂ , CO, NO ₂ , NO, HCN and	4.9	209
6	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011, 116, .	3.3	206
7	Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry. Atmospheric Chemistry and Physics, 2005, 5, 465-481.	4.9	200
8	On-Line Monitoring of Microbial Volatile Metabolites by Proton Transfer Reaction-Mass Spectrometry. Applied and Environmental Microbiology, 2008, 74, 2179-2186.	3.1	199
9	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
10	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	3.3	184
11	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	4.9	173
12	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	3.3	165
13	Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant, Cell and Environment, 2005, 28, 1334-1343.	5.7	164
14	Ozone-Initiated Chemistry in an Occupied Simulated Aircraft Cabin. Environmental Science & Technology, 2007, 41, 6177-6184.	10.0	156
15	Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment. Environmental Science & Technology, 2005, 39, 4823-4832.	10.0	143
16	Contribution of Different Carbon Sources to Isoprene Biosynthesis in Poplar Leaves. Plant Physiology, 2004, 135, 152-160.	4.8	133
17	Brown carbon in the continental troposphere. Geophysical Research Letters, 2014, 41, 2191-2195.	4.0	113
18	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	2.5	111

#	Article	IF	CITATIONS
19	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.	4.9	106
20	Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign. Journal of Geophysical Research, 2011, 116, .	3.3	104
21	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	3.3	103
22	A new software tool for the analysis of high resolution PTR-TOF mass spectra. Chemometrics and Intelligent Laboratory Systems, 2013, 127, 158-165.	3.5	102
23	Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS). Atmospheric Environment, 2001, 35, 6181-6191.	4.1	100
24	Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters, 2014, 41, 8645-8651.	4.0	99
25	Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2008, 8, 2189-2200.	4.9	97
26	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 7841-7858.	4.9	96
27	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	3.3	96
28	A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution. Atmospheric Measurement Techniques, 2014, 7, 3763-3772.	3.1	95
29	Geographical origin classification of olive oils by PTR-MS. Food Chemistry, 2008, 108, 374-383.	8.2	93
30	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	3.3	93
31	Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations. Atmospheric Environment, 2012, 56, 45-51.	4.1	92
32	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	4.9	92
33	Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast. Atmospheric Chemistry and Physics, 2011, 11, 1769-1790.	4.9	90
34	Organic trace gas measurements by PTR-MS during INDOEX 1999. Journal of Geophysical Research, 2002, 107, INX2 23-1.	3.3	89
35	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, .	3.3	89
36	A product study of the isoprene+NO ₃ reaction. Atmospheric Chemistry and Physics, 2009, 9, 4945-4956.	4.9	88

#	Article	IF	CITATIONS
37	Upper tropospheric ozone production from lightning NO <i>_x</i> â€impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-2523.	3.3	88
38	Xylemâ€ŧransported glucose as an additional carbon source for leaf isoprene formation in Quercus robur. New Phytologist, 2002, 156, 171-178.	7.3	87
39	New insights into the column CH ₂ O/NO ₂ ratio as an indicator of nearâ€surface ozone sensitivity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8885-8907.	3.3	87
40	In situ measurements and modeling of reactive trace gases in a small biomass burning plume. Atmospheric Chemistry and Physics, 2016, 16, 3813-3824.	4.9	81
41	Observations of nonmethane organic compounds during ARCTAS â^' Part 1: Biomass burning emissions and plume enhancements. Atmospheric Chemistry and Physics, 2011, 11, 11103-11130.	4.9	80
42	CO source contribution analysis for California during ARCTAS-CARB. Atmospheric Chemistry and Physics, 2011, 11, 7515-7532.	4.9	79
43	Transient Release of Oxygenated Volatile Organic Compounds during Light-Dark Transitions in Grey Poplar Leaves. Plant Physiology, 2004, 135, 1967-1975.	4.8	77
44	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.	4.9	76
45	Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland). Atmospheric Chemistry and Physics, 2009, 9, 2635-2645.	4.9	73
46	Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS ARB 2008. Journal of Geophysical Research, 2012, 117, .	3.3	73
47	A method for real-time detection of PAN, PPN and MPAN in ambient air. Geophysical Research Letters, 2000, 27, 895-898.	4.0	70
48	Characterization of wine with PTR-MS. International Journal of Mass Spectrometry, 2004, 239, 215-219.	1.5	70
49	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.	4.9	70
50	Atmospheric benzene observations from oil and gas production in the Denverâ€Julesburg Basin in July and August 2014. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,055.	3.3	70
51	O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia. International Journal of Mass Spectrometry, 2007, 265, 382-387.	1.5	69
52	Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign. Atmospheric Chemistry and Physics, 2013, 13, 4707-4721.	4.9	67
53	Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC ⁴ RS campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4188-4210.	3.3	67
54	Atmospheric chemistry of 2-aminoethanol (MEA). Energy Procedia, 2011, 4, 2245-2252.	1.8	65

#	Article	IF	CITATIONS
55	Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. Indoor Air, 2017, 27, 816-828.	4.3	64
56	High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US. Atmospheric Chemistry and Physics, 2018, 18, 5483-5497.	4.9	64
57	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	4.9	62
58	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. Atmospheric Chemistry and Physics, 2016, 16, 4369-4378.	4.9	60
59	Patterns of CO ₂ and radiocarbon across high northern latitudes during International Polar Year 2008. Journal of Geophysical Research, 2011, 116, .	3.3	59
60	Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv. Plasma Sources Science and Technology, 1999, 8, 332-336.	3.1	58
61	A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter. Atmospheric Measurement Techniques, 2015, 8, 1353-1360.	3.1	58
62	Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data. Atmospheric Chemistry and Physics, 2008, 8, 6453-6468.	4.9	57
63	Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8448-8468.	3.3	56
64	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	4.0	53
65	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.	27.8	53
66	PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density. Environmental Science & Technology, 2007, 41, 229-234.	10.0	52
67	Global and regional effects of the photochemistry of CH ₃ O ₂ NO <sub&ar evidence from ARCTAS. Atmospheric Chemistry and Physics, 2011, 11, 4209-4219.</sub&ar 	n p;g t;2&a	ˈm ᡨ ᠌ᡘlt;/sub&
68	Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids. International Journal of Mass Spectrometry, 2004, 239, 243-248.	1.5	51
69	Study of OH-initiated degradation of 2-aminoethanol. Atmospheric Chemistry and Physics, 2012, 12, 1881-1901.	4.9	51
70	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102.	4.9	50
71	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	4.9	47
72	Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign. Environmental Science & Technology, 2018, 52, 4969-4978.	10.0	46

#	Article	IF	CITATIONS
73	Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad. Energy Procedia, 2014, 63, 6023-6038.	1.8	45
74	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	10.3	45
75	Development of a Proton-Transfer Reaction-Linear Ion Trap Mass Spectrometer for Quantitative Determination of Volatile Organic Compounds. Analytical Chemistry, 2008, 80, 8171-8177.	6.5	44
76	Emissions of C ₆ –C ₈ aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 826-842.	3.3	44
77	Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China. Environmental Science & Technology, 2019, 53, 9269-9278.	10.0	44
78	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elementa, 2020, 8, .	3.2	44
79	Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 10505-10518.	4.9	41
80	Desiccant wheels as gas-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment. Indoor Air, 2008, 18, 375-385.	4.3	40
81	Airborne observations of bioaerosol over the Southeast United States using a Wideband Integrated Bioaerosol Sensor. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8506-8524.	3.3	40
82	Degradation and Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad. Energy Procedia, 2017, 114, 1245-1262.	1.8	40
83	Disjunct eddy covariance measurements of monoterpene fluxes from a Norway spruce forest using PTR-MS. International Journal of Mass Spectrometry, 2004, 239, 111-115.	1.5	38
84	An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.	4.9	38
85	Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVERâ€AQ 2011 observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1922-1934.	3.3	38
86	Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa, 2019, 7, .	3.2	38
87	Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments. Atmospheric Chemistry and Physics, 2012, 12, 829-843.	4.9	37
88	A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime. Atmospheric Chemistry and Physics, 2009, 9, 3385-3396.	4.9	35
89	The reactions of N-methylformamide and N,N-dimethylformamide with OH and their photo-oxidation under atmospheric conditions: experimental and theoretical studies. Physical Chemistry Chemical Physics, 2015, 17, 7046-7059.	2.8	34
90	Lubricating Oil as a Major Constituent of Ship Exhaust Particles. Environmental Science and Technology Letters, 2017, 4, 54-58.	8.7	34

#	Article	IF	CITATIONS
91	Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2017, 89, 10889-10897.	6.5	34
92	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
93	Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.	4.9	33
94	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	4.9	32
95	Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ). Elementa, 2020, 8, .	3.2	32
96	Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVERâ€AQ. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5140-5154.	3.3	31
97	New Perspectives on CO ₂ , Temperature, and Light Effects on BVOC Emissions Using Online Measurements by PTR-MS and Cavity Ring-Down Spectroscopy. Environmental Science & Technology, 2018, 52, 13811-13823.	10.0	31
98	Is there an aerosol signature of chemical cloud processing?. Atmospheric Chemistry and Physics, 2018, 18, 16099-16119.	4.9	30
99	An inversion of NO _{<i>x</i>} and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 2020, 20, 9837-9854.	4.9	30
100	Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7430-7460.	3.3	28
101	Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033475.	3.3	28
102	Atmospheric Chemistry of C3â^'C6Cycloalkanecarbaldehydes. Journal of Physical Chemistry A, 2005, 109, 5104-5118.	2.5	27
103	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.	4.1	26
104	Ambient observations of hygroscopic growth factor and <i>f</i> (RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 661-677.	3.3	25
105	Airborne quantification of upper tropospheric NO <i>_x</i> production from lightning in deep convective storms over the United States Great Plains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2002-2028.	3.3	25
106	A novel method for producing NH4+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. International Journal of Mass Spectrometry, 2020, 447, 116254.	1.5	25
107	Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,527.	3.3	24
108	Experimental and Theoretical Study of the OH-Initiated Photo-oxidation of Formamide. Journal of Physical Chemistry A, 2016, 120, 1222-1230.	2.5	23

#	Article	IF	CITATIONS
109	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	2.5	23
110	Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent. Journal of Geophysical Research, 2011, 116, .	3.3	22
111	Using Observations and Sourceâ€6pecific Model Tracers to Characterize Pollutant Transport During FRAPPÉ and DISCOVERâ€AQ. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10510-10538.	3.3	22
112	In situ measurements of water uptake by black carbon ontaining aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.	3.3	21
113	Revisiting Acetonitrile as Tracer of Biomass Burning in Anthropogenicâ€Influenced Environments. Geophysical Research Letters, 2021, 48, e2020GL092322.	4.0	21
114	Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea's northwest coast during the Korea-United States Air Quality study. Elementa, 2020, 8, .	3.2	21
115	Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire. Atmospheric Environment, 2016, 127, 293-302.	4.1	20
116	High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. Environmental Science & Technology, 2020, 54, 11818-11826.	10.0	20
117	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	3.1	20
118	Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	20
119	Formaldehyde column density measurements as a suitable pathway to estimate nearâ€surface ozone tendencies from space. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13088-13112.	3.3	19
120	Higher measured than modeled ozone production at increased NO _{<i>x</i>} levels in the Colorado Front Range. Atmospheric Chemistry and Physics, 2017, 17, 11273-11292.	4.9	18
121	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	4.9	18
122	Gas-to-particle partitioning of major biogenic oxidation products: a study on freshly formed and aged biogenic SOA. Atmospheric Chemistry and Physics, 2018, 18, 12969-12989.	4.9	18
123	Modeling NH 4 NO 3 Over the San Joaquin Valley During the 2013 DISCOVERâ€AQ Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4727-4745.	3.3	18
124	Largeâ€eddy simulation of biogenic VOC chemistry during the DISCOVERâ€AQ 2011 campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8083-8105.	3.3	17
125	Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA. Atmospheric Measurement Techniques, 2018, 11, 1481-1500.	3.1	17
126	Introducing the extended volatility range proton-transfer-reaction mass spectrometer (EVR PTR-MS). Atmospheric Measurement Techniques, 2021, 14, 1355-1363.	3.1	17

#	Article	IF	CITATIONS
127	Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric Chemistry and Physics, 2021, 21, 3395-3425.	4.9	16
128	Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AQ campaign. Elementa, 2021, 9, .	3.2	16
129	Atmospheric Fate of Nitramines: An Experimental and Theoretical Study of the OH Reactions with CH3NHNO2and (CH3)2NNO2. Journal of Physical Chemistry A, 2014, 118, 3450-3462.	2.5	15
130	Intercomparison and evaluation of satellite peroxyacetyl nitrate observations in the upper troposphere–lower stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 13541-13559.	4.9	15
131	Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.	4.9	15
132	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & Technology, 2022, 56, 7564-7577.	10.0	15
133	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmospheric Chemistry and Physics, 2021, 21, 1889-1916.	4.9	14
134	Theoretical and Experimental Study on the Reaction of <i>tert</i> Butylamine with OH Radicals in the Atmosphere. Journal of Physical Chemistry A, 2018, 122, 4470-4480.	2.5	13
135	Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots. Environmental Science & Technology, 2021, 55, 7776-7785.	10.0	13
136	A compact and easy-to-use mass spectrometer for online monitoring of amines in the flue gas of a post-combustion carbon capture plant. International Journal of Greenhouse Gas Control, 2018, 78, 349-353.	4.6	12
137	Bulk Organic Aerosol Analysis by Proton-Transfer-Reaction Mass Spectrometry: An Improved Methodology for the Determination of Total Organic Mass, O:C and H:C Elemental Ratios, and the Average Molecular Formula. Analytical Chemistry, 2019, 91, 12619-12624.	6.5	11
138	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
139	Nextâ€Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
140	Experimental and Theoretical Study of the OH-Initiated Degradation of Piperazine under Simulated Atmospheric Conditions. Journal of Physical Chemistry A, 2021, 125, 411-422.	2.5	10
141	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	10
142	Eddy-covariance flux measurements in an Italian deciduous forest using PTR-ToF-MS, PTR-QMS and FIS. International Journal of Environmental Analytical Chemistry, 2018, 98, 758-788.	3.3	9
143	Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study. Atmospheric Measurement Techniques, 2019, 12, 5947-5958.	3.1	9
144	Modeling air quality in the San Joaquin valley of California during the 2013 Discover-AQ field campaign. Atmospheric Environment: X, 2020, 5, 100067.	1.4	9

#	Article	IF	CITATIONS
145	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	4.9	9
146	An Inversion Framework for Optimizing Nonâ€Methane VOC Emissions Using Remote Sensing and Airborne Observations in Northeast Asia During the KORUSâ€AQ Field Campaign. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	8
147	Taehwa Research Forest: a receptor site for severe domestic pollution events in Korea during 2016. Atmospheric Chemistry and Physics, 2019, 19, 5051-5067.	4.9	7
148	Biogenic isoprene emissions driven by regional weather predictions using different initialization methods: case studies during the SEAC ⁴ RS and DISCOVER-AQ airborne campaigns. Geoscientific Model Development, 2017, 10, 3085-3104.	3.6	6
149	Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment, 2022, 269, 118854.	4.1	6
150	Atmospheric Chemistry of <i>N</i> -Methylmethanimine (CH ₃ Nâ•CH ₂): A Theoretical and Experimental Study. Journal of Physical Chemistry A, 2022, 126, 3247-3264.	2.5	6
151	Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions. Journal of Physical Chemistry A, 2021, 125, 7502-7519.	2.5	5
152	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	4.9	5
153	A Sampling Line Artifact in Stack Emission Measurement of Alkanolamine-enabled Carbon Capture Facility: Surface Reaction of Amines with Formaldehyde. Energy Procedia, 2017, 114, 1022-1025.	1.8	4
154	Wintertime Nitrous Oxide Emissions in the San Joaquin Valley of California Estimated from Aircraft Observations. Environmental Science & Technology, 2021, 55, 4462-4473.	10.0	4
155	Atmospheric Chemistry of tert-butylamine and AMP. Energy Procedia, 2017, 114, 1026-1032.	1.8	3
156	Atmospheric Chemistry of Methyl Isocyanide–An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 6562-6571.	2.5	3
157	Atmospheric chemistry of diazomethane – an experimental and theoretical study. Molecular Physics, 2020, 118, e1718227.	1.7	3
158	The role of a suburban forest in controlling vertical trace gas and OH reactivity distributions – a case study for the Seoul metropolitan area. Faraday Discussions, 2021, 226, 537-550.	3.2	3
159	Best practices for the measurement of 2-amino-2-methyl-1-propanol, piperazine and their degradation products in amine plant emissions. SSRN Electronic Journal, 0, , .	0.4	2
160	Online monitoring of volatile organic compounds emitted from human bronchial epithelial cells as markers for oxidative stress. Journal of Breath Research, 2021, 15, 016015.	3.0	2
161	Atmospheric Emissions of Amino-Methyl-Propanol, Piperazine and Their Degradation Products During the 2019-20 ALIGN-CCUS Campaign at the Technology Centre Mongstad. SSRN Electronic Journal, 0, , .	0.4	1