Erik Procko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408053/publications.pdf

Version: 2024-02-01

42 papers

2,983 citations

236925 25 h-index 265206 42 g-index

57 all docs

57 docs citations

57 times ranked

4510 citing authors

#	Article	IF	CITATIONS
1	Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 2022, 18, 342-351.	8.0	63
2	The substrate import mechanism of the human serotonin transporter. Biophysical Journal, 2022, 121, 715-730.	0.5	21
3	Computationally engineered ACE2 decoy binds with nanomolar affinity with the SARS-CoV-2 spike protein. Biophysical Journal, 2022, 121, 422a.	0.5	1
4	A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114397119.	7.1	38
5	Structural Rearrangement of the Serotonin Transporter Intracellular Gate Induced by Thr276 Phosphorylation. ACS Chemical Neuroscience, 2022, 13, 933-945.	3.5	11
6	Engineering Proteins by Combining Deep Mutational Scanning and Yeast Display. Methods in Molecular Biology, 2022, 2491, 117-142.	0.9	2
7	TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules. Nature Chemical Biology, 2022, 18, 859-868.	8.0	15
8	An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Science Advances, 2021, 7, .	10.3	117
9	Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. ELife, 2021, 10, .	6.0	43
10	Deep Mutational Scanning of Viral Glycoproteins and Their Host Receptors. Frontiers in Molecular Biosciences, 2021, 8, 636660.	3.5	12
11	<scp>ACE2â€based</scp> decoy receptors for <scp>SARS</scp> coronavirus 2. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1065-1078.	2.6	23
12	TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap. Nature Communications, 2021, 12, 3174.	12.8	33
13	Computationally Designed ACE2 Decoy Receptor Binds SARS-CoV-2 Spike (S) Protein with Tight Nanomolar Affinity. Journal of Chemical Information and Modeling, 2021, 61, 4656-4669.	5.4	24
14	The Ile191Val is a partial loss-of-function variant of the TAS1R2 sweet-taste receptor and is associated with reduced glucose excursions in humans. Molecular Metabolism, 2021, 54, 101339.	6.5	10
15	Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science, 2020, 369, 1261-1265.	12.6	520
16	Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Review of Proteomics, 2020, 17, 633-638.	3.0	10
17	Engineered receptors for human cytomegalovirus that are orthogonal to normal human biology. PLoS Pathogens, 2020, 16, e1008647.	4.7	11
18	Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Scientific Reports, 2020, 10, 4756.	3.3	42

#	Article	IF	CITATIONS
19	Conformational Engineering of HIV-1 Env Based on Mutational Tolerance in the CD4 and PG16 Bound States. Journal of Virology, 2019, 93, .	3.4	14
20	Structural architecture of a dimeric class C GPCR based on co-trafficking of sweet taste receptor subunits. Journal of Biological Chemistry, 2019, 294, 4759-4774.	3.4	48
21	Molecular determinants of chaperone interactions on MHC-I for folding and antigen repertoire selection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25602-25613.	7.1	43
22	Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. Journal of Immunology, 2018, 200, 3825-3839.	0.8	62
23	Reduced axonal surface expression and phosphoinositide sensitivity in K ν 7 channels disrupts their function to inhibit neuronal excitability in Kcnq2 epileptic encephalopathy. Neurobiology of Disease, 2018, 118, 76-93.	4.4	23
24	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	6.0	65
25	Motif-Driven Design of Protein–Protein Interfaces. Methods in Molecular Biology, 2016, 1414, 285-304.	0.9	34
26	Deep Mutational Scans as a Guide to Engineering High Affinity T Cell Receptor Interactions with Peptide-bound Major Histocompatibility Complex. Journal of Biological Chemistry, 2016, 291, 24566-24578.	3.4	42
27	An Engineered Switch in T Cell Receptor Specificity Leads to an Unusual but Functional Binding Geometry. Structure, 2016, 24, 1142-1154.	3.3	22
28	Intracellular Delivery System for Antibody–Peptide Drug Conjugates. Molecular Therapy, 2015, 23, 907-917.	8.2	33
29	A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells. Cell, 2014, 157, 1644-1656.	28.9	118
30	Computational Design of a Protein-Based Enzyme Inhibitor. Journal of Molecular Biology, 2013, 425, 3563-3575.	4.2	85
31	Structural and energetic basis of folded-protein transport by the FimD usher. Nature, 2013, 496, 243-246.	27.8	88
32	Distinct properties of Ca2+–calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. Journal of General Physiology, 2012, 140, 541-555.	1.9	94
33	Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel. Biochemistry, 2012, 51, 6195-6206.	2.5	84
34	Antigen processing and presentation: TAPping into ABC transporters. Current Opinion in Immunology, 2009, 21, 84-91.	5.5	44
35	The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB Journal, 2009, 23, 1287-1302.	0.5	155
36	Functionally Important Interactions between the Nucleotide-Binding Domains of an Antigenic Peptide Transporter. Biochemistry, 2008, 47, 5699-5708.	2.5	15

#	Article	IF	CITATION
37	Insights into the Roles of Conserved and Divergent Residues in the Ankyrin Repeats of TRPV Ion Channels. Channels, 2007, 1, 148-151.	2.8	23
38	The Ankyrin Repeats of TRPV1 Bind Multiple Ligands and Modulate Channel Sensitivity. Neuron, 2007, 54, 905-918.	8.1	377
39	Distinct Structural and Functional Properties of the ATPase Sites in an Asymmetric ABC Transporter. Molecular Cell, 2006, 24, 51-62.	9.7	134
40	Identification of domain boundaries within the Nâ€termini of TAP1 and TAP2 and their importance in tapasin binding and tapasinâ€mediated increase in peptide loading of MHC class I. Immunology and Cell Biology, 2005, 83, 475-482.	2.3	47
41	Leukocytes on the move with phosphoinositide 3-kinase and its downstream effectors. BioEssays, 2005, 27, 153-163.	2.5	36
42	Chromatin Remodeling, Measured by a Novel Real-Time Polymerase Chain Reaction Assay, Across the Proximal Promoter Region of the <i>IL-2</i> Gene. Journal of Immunology, 2001, 167, 4494-4503.	0.8	184