Katherine W Osteryoung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2407942/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. PLoS Genetics, 2012, 8, e1003064.	3.5	376
2	Chloroplast Division in Higher Plants Requires Members of Two Functionally Divergent Gene Families with Homology to Bacterial ftsZ. Plant Cell, 1998, 10, 1991-2004.	6.6	323
3	Conserved cell and organelle division. Nature, 1995, 376, 473-474.	27.8	286
4	The Division of Endosymbiotic Organelles. Science, 2003, 302, 1698-1704.	12.6	281
5	Ftsz Ring Formation at the Chloroplast Division Site in Plants. Journal of Cell Biology, 2001, 153, 111-120.	5.2	272
6	ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4328-4333.	7.1	250
7	ARC6 Is a J-Domain Plastid Division Protein and an Evolutionary Descendant of the Cyanobacterial Cell Division Protein Ftn2[W]. Plant Cell, 2003, 15, 1918-1933.	6.6	237
8	Exceptional Sensitivity of Rubisco Activase to Thermal Denaturation in Vitro and in Vivo. Plant Physiology, 2001, 127, 1053-1064.	4.8	234
9	Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 2001, 45, 281-293.	3.9	209
10	A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Current Biology, 2000, 10, 507-516.	3.9	204
11	Identification of cyanobacterial cell division genes by comparative and mutational analyses. Molecular Microbiology, 2005, 56, 126-143.	2.5	159
12	Division and Dynamic Morphology of Plastids. Annual Review of Plant Biology, 2014, 65, 443-472.	18.7	154
13	PDV1 and PDV2 Mediate Recruitment of the Dynamin-Related Protein ARC5 to the Plastid Division Site. Plant Cell, 2006, 18, 2517-2530.	6.6	149
14	Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus. Cell, 2010, 140, 529-539.	28.9	136
15	Colocalization of Plastid Division Proteins in the Chloroplast Stromal Compartment Establishes a New Functional Relationship between FtsZ1 and FtsZ2 in Higher Plants. Plant Physiology, 2001, 127, 1656-1666.	4.8	130
16	Chloroplast Division and Morphology Are Differentially Affected by Overexpression of FtsZ1 and FtsZ2 Genes in Arabidopsis. Plant Physiology, 2000, 124, 1668-1677.	4.8	120
17	THEPLASTIDDIVISIONMACHINE. Annual Review of Plant Biology, 2001, 52, 315-333.	14.3	120
18	<i>Arabidopsis</i> ARC6 Coordinates the Division Machineries of the Inner and Outer Chloroplast	6.6	115

¹⁸ Membranes through Interaction with PDV2 in the Intermembrane Space. Plant Cell, 2008, 20, 2460-2470.

#	Article	IF	CITATIONS
19	The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis. Plant Cell, 2015, 27, 391-402.	6.6	112
20	FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6759-6764.	7.1	111
21	PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant Journal, 2009, 59, 700-711.	5.7	107
22	Chloroplast Division. Traffic, 2007, 8, 451-461.	2.7	97
23	The Molecular Machinery of Chloroplast Division. Plant Physiology, 2018, 176, 138-151.	4.8	95
24	Plastid division: across time and space. Current Opinion in Plant Biology, 2008, 11, 577-584.	7.1	91
25	Arabidopsis FtsZ2-1 and FtsZ2-2 Are Functionally Redundant, But FtsZ-Based Plastid Division Is Not Essential for Chloroplast Partitioning or Plant Growth and Development. Molecular Plant, 2009, 2, 1211-1222.	8.3	84
26	Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in Arabidopsis thaliana. BMC Plant Biology, 2009, 9, 38.	3.6	84
27	Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. ELife, 2018, 7, .	6.0	82
28	New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis Â. Plant Physiology, 2008, 146, 1482-1500.	4.8	79
29	FtsZ in chloroplast division: structure, function and evolution. Current Opinion in Cell Biology, 2013, 25, 461-470.	5.4	74
30	Early divergence of the FtsZ1 and FtsZ2 plastid division gene families in photosynthetic eukaryotes. Gene, 2003, 320, 97-108.	2.2	69
31	GTP-dependent Heteropolymer Formation and Bundling of Chloroplast FtsZ1 and FtsZ2. Journal of Biological Chemistry, 2010, 285, 20634-20643.	3.4	60
32	Effects of Mutations in Arabidopsis FtsZ1 on Plastid Division, FtsZ Ring Formation and Positioning, and FtsZ Filament Morphology in Vivo. Plant and Cell Physiology, 2007, 48, 775-791.	3.1	58
33	Plastid division: evidence for a prokaryotically derived mechanism. Current Opinion in Plant Biology, 1998, 1, 475-479.	7.1	56
34	<i>In vivo</i> quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochemical Journal, 2008, 412, 367-378.	3.7	52
35	Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. Journal of Cell Biology, 2012, 199, 623-637.	5.2	50
36	Chloroplast Division Protein ARC3 Regulates Chloroplast FtsZ-Ring Assembly and Positioning in <i>Arabidopsis</i> through Interaction with FtsZ2. Plant Cell, 2013, 25, 1787-1802.	6.6	47

KATHERINE W OSTERYOUNG

#	Article	IF	CITATIONS
37	<i>FtsHi1/ARC1</i> is an essential gene in Arabidopsis that links chloroplast biogenesis and division. Plant Journal, 2012, 72, 856-867.	5.7	42
38	Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex and Negative Regulation of FtsZ Assembly. Plant Physiology, 2016, 170, 250-262.	4.8	40
39	<i>REDUCED CHLOROPLAST COVERAGE</i> genes from <i>Arabidopsis thaliana</i> help to establish the size of the chloroplast compartment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1116-25.	7.1	39
40	Thylakoid-Bound Polysomes and a Dynamin-Related Protein, FZL, Mediate Critical Stages of the Linear Chloroplast Biogenesis Program in Greening Arabidopsis Cotyledons. Plant Cell, 2018, 30, 1476-1495.	6.6	39
41	Nonâ€invasive, wholeâ€plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants. Plant Journal, 2015, 84, 428-442.	5.7	37
42	Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization. Nature Plants, 2016, 2, 16095.	9.3	36
43	CLUMPED CHLOROPLASTS 1 is required for plastid separation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18530-18535.	7.1	35
44	Robust <scp>M</scp> inâ€system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Molecular Microbiology, 2017, 103, 483-503.	2.5	35
45	ORHis, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. Molecular Plant, 2020, 13, 864-878.	8.3	35
46	Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass. Applied and Environmental Microbiology, 2017, 83, .	3.1	31
47	Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. Journal of Experimental Botany, 2017, 68, 3541-3555.	4.8	30
48	Organelle Fission. Crossing the Evolutionary Divide: Fig. 1 Plant Physiology, 2000, 123, 1213-1216.	4.8	28
49	Conserved Dynamics of Chloroplast Cytoskeletal FtsZ Proteins Across Photosynthetic Lineages. Plant Physiology, 2018, 176, 295-306.	4.8	25
50	A J-Like Protein Influences Fatty Acid Composition of Chloroplast Lipids in Arabidopsis. PLoS ONE, 2011, 6, e25368.	2.5	24
51	Functional Analysis of the Chloroplast Division Complex Using <i>Schizosaccharomyces pombe</i> as a Heterologous Expression System. Microscopy and Microanalysis, 2016, 22, 275-289.	0.4	17
52	The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments. Journal of Biological Chemistry, 2017, 292, 5207-5215.	3.4	14
53	From Endosymbiosis to Synthetic Photosynthetic Life. Plant Physiology, 2010, 154, 593-597.	4.8	13
54	ARC3 Activation by PARC6 Promotes FtsZ-Ring Remodeling at the Chloroplast Division Site. Plant Cell, 2019, 31, 862-885.	6.6	13

KATHERINE W OSTERYOUNG

#	Article	IF	CITATIONS
55	Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synthetic Biology, 2021, 10, 1667-1681.	3.8	13
56	Immunofluorescence Microscopy for Localization of Arabidopsis Chloroplast Proteins. Methods in Molecular Biology, 2011, 774, 33-58.	0.9	11
57	Allelic Variation in the Chloroplast Division Gene <i>FtsZ2-2</i> Leads to Natural Variation in Chloroplast Size. Plant Physiology, 2019, 181, 1059-1074.	4.8	8
58	The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability inÂvitro. Journal of Biological Chemistry, 2021, 296, 100627.	3.4	6
59	The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. Journal of Biological Chemistry, 2018, 293, 10692-10706.	3.4	4
60	Crystal structure of a conserved domain in the intermembrane space region of the plastid division protein ARC6. Protein Science, 2016, 25, 523-529.	7.6	3
61	Chloroplast Division: A Work of ARTEMIS. Current Biology, 2002, 12, R844-R845.	3.9	0
62	Protein Gradients on the Nucleoid Position the Carbon-Fixing Organelles of Cyanobacteria. SSRN Electronic Journal, 0, , .	0.4	0