Robert M Bowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2407846/publications.pdf

Version: 2024-02-01

34 papers 5,110 citations

236925 25 h-index 34 g-index

34 all docs

34 docs citations

34 times ranked 7019 citing authors

#	Article	IF	CITATIONS
1	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.	17.5	1,512
2	The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environmental Microbiology, 2010, 12, 2885-2893.	3.8	574
3	Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME Journal, 2011, 5, 601-612.	9.8	385
4	Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere. Environmental Science & Environmental Environmental Science & Environmental Environmental Science & Environmental Environmental Environmental Science & Environmental Envir	10.0	349
5	Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME Journal, 2012, 6, 588-596.	9.8	282
6	Characterization of Airborne Microbial Communities at a High-Elevation Site and Their Potential To Act as Atmospheric Ice Nuclei. Applied and Environmental Microbiology, 2009, 75, 5121-5130.	3.1	273
7	Sources of Bacteria in Outdoor Air across Cities in the Midwestern United States. Applied and Environmental Microbiology, 2011, 77, 6350-6356.	3.1	237
8	High-resolution phylogenetic microbial community profiling. ISME Journal, 2016, 10, 2020-2032.	9.8	232
9	Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment, 2012, 50, 41-49.	4.1	226
10	Towards a balanced view of the bacterial tree of life. Microbiome, 2017, 5, 140.	11.1	102
11	Next generation sequencing data of a defined microbial mock community. Scientific Data, 2016, 3, 160081.	5.3	90
12	Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics, 2015, 16, 856.	2.8	79
13	Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Molecular Immunology, 2009, 46, 1688-1695.	2.2	78
14	Detection and quantitation of infectious pancreatic necrosis virus by real-time reverse transcriptase-polymerase chain reaction using lethal and non-lethal tissue sampling. Journal of Virological Methods, 2008, 147, 226-234.	2.1	76
15	Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME Journal, 2020, 14, 659-675.	9.8	69
16	Fungal growth on a common wood substrate across a tropical elevation gradient: Temperature sensitivity, community composition, and potential for above-ground decomposition. Soil Biology and Biochemistry, 2010, 42, 1083-1090.	8.8	61
17	Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME Journal, 2016, 10, 2033-2047.	9.8	59

#	Article	IF	CITATIONS
19	Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS ONE, 2019, 14, e0212355.	2.5	44
20	Ecological and genomic analyses of candidate phylum <scp>WPS</scp> â€2 bacteria in an unvegetated soil. Environmental Microbiology, 2020, 22, 3143-3157.	3.8	42
21	The contribution of biological particles to observed particulate organic carbon at a remote high altitude site. Atmospheric Environment, 2009, 43, 4278-4282.	4.1	41
22	A pipeline for targeted metagenomics of environmental bacteria. Microbiome, 2020, 8, 21.	11.1	39
23	cDNA Microarrays as a Tool for Identification of Biomineralization Proteins in the Coccolithophorid Emiliania huxleyi (Haptophyta). Applied and Environmental Microbiology, 2006, 72, 5512-5526.	3.1	36
24	Suppressive Subtractive Hybridization of and Differences in Gene Expression Content of Calcifying and Noncalcifying Cultures of Emiliania huxleyi Strain 1516. Applied and Environmental Microbiology, 2005, 71, 2564-2575.	3.1	31
25	Expression of a foreign epitope on infectious pancreatic necrosis virus VP2 capsid protein subviral particle (SVP) and immunogenicity in rainbow trout. Antiviral Research, 2010, 85, 525-531.	4.1	27
26	Detection and quantification of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) by SYBR Green real-time reverse transcriptase-polymerase chain reaction. Journal of Virological Methods, 2008, 147, 157-166.	2.1	26
27	Effect of template on generating a standard curve for absolute quantification of an RNA virus by real-time reverse transcriptase-polymerase chain reaction. Molecular and Cellular Probes, 2011, 25, 60-64.	2.1	20
28	High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics. Frontiers in Microbiology, 2021, 12, 668238.	3.5	16
29	Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME Journal, 2022, 16, 1337-1347.	9.8	15
30	Insights into the single cell draft genome of "Candidatus Achromatium palustre― Standards in Genomic Sciences, 2016, 11, 28.	1.5	13
31	Analysis of single-cell genome sequences of bacteria and archaea. Emerging Topics in Life Sciences, 2017, 1, 249-255.	2.6	10
32	Zymomonas diversity and potential for biofuel production. Biotechnology for Biofuels, 2021, 14, 112.	6.2	10
33	Metagenomes and Metagenome-Assembled Genomes from Substrate-Amended Hot Spring Sediment Incubations from Yellowstone National Park. Microbiology Resource Announcements, 2022, 11, e0106521.	0.6	2
34	Sequencing of Genomes from Environmental Single Cells. Methods in Molecular Biology, 2018, 1712, 97-111.	0.9	1