
Robert A Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	12.6	1,517
2	Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA. PLoS Pathogens, 2007, 3, e50.	4.7	326
3	A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatus. PLoS Pathogens, 2008, 4, e1000200.	4.7	291
4	Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nature Reviews Microbiology, 2007, 5, 418-430.	28.6	281
5	Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 1091-1103.	3.4	262
6	Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology, 2005, 42, 119-129.	2.1	240
7	Disruption of a Nonribosomal Peptide Synthetase in Aspergillus fumigatus Eliminates Gliotoxin Production. Eukaryotic Cell, 2006, 5, 972-980.	3.4	208
8	In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis. PLoS Pathogens, 2011, 7, e1002145.	4.7	208
9	Iridovirus and Microsporidian Linked to Honey Bee Colony Decline. PLoS ONE, 2010, 5, e13181.	2.5	183
10	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	4.7	181
11	Hypoxia and Fungal Pathogenesis: To Air or Not To Air?. Eukaryotic Cell, 2012, 11, 560-570.	3.4	173
12	ChIP-seq and In Vivo Transcriptome Analyses of the Aspergillus fumigatus SREBP SrbA Reveals a New Regulator of the Fungal Hypoxia Response and Virulence. PLoS Pathogens, 2014, 10, e1004487.	4.7	171
13	Calcineurin Target CrzA Regulates Conidial Germination, Hyphal Growth, and Pathogenesis of <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 1085-1097.	3.4	163
14	SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus. PLoS Genetics, 2011, 7, e1002374.	3.5	150
15	Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia, 2018, 61, 942-953.	6.3	149
16	Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. MBio, 2016, 7, .	4.1	131
17	Diverse Regulation of the CreA Carbon Catabolite Repressor in <i>Aspergillus nidulans</i> . Genetics, 2016, 203, 335-352.	2.9	127
18	IL-1α Signaling Is Critical for Leukocyte Recruitment after Pulmonary Aspergillus fumigatus Challenge. PLoS Pathogens, 2015, 11, e1004625.	4.7	126

#	Article	IF	CITATIONS
19	The <scp>J</scp> anus transcription factor <scp>H</scp> ap <scp>X</scp> controls fungal adaptation to both iron starvation and iron excess. EMBO Journal, 2014, 33, 2261-2276.	7.8	121
20	Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics, 2012, 13, 62.	2.8	115
21	Trehalose 6â€phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2010, 77, 891-911.	2.5	104
22	Immune responses against Aspergillus fumigatus. Current Opinion in Infectious Diseases, 2011, 24, 315-322.	3.1	101
23	HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002330.	4.7	101
24	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	12.8	100
25	Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2979-2981.	3.2	96
26	Compartment-Specific and Sequential Role of MyD88 and CARD9 in Chemokine Induction and Innate Defense during Respiratory Fungal Infection. PLoS Pathogens, 2015, 11, e1004589.	4.7	93
27	Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	93
28	Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science, 2017, 357, 1037-1041.	12.6	92
29	<i>Aspergillus fumigatus</i> mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis. Molecular Microbiology, 2012, 84, 383-399.	2.5	84
30	Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nature Microbiology, 2019, 4, 2430-2441.	13.3	81
31	Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathogens, 2017, 13, e1006340.	4.7	80
32	Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development. Frontiers in Microbiology, 2017, 8, 92.	3.5	77
33	Myeloid Derived Hypoxia Inducible Factor 1-alpha Is Required for Protection against Pulmonary Aspergillus fumigatus Infection. PLoS Pathogens, 2014, 10, e1004378.	4.7	71
34	Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes and Infection, 2013, 15, 259-269.	1.9	69
35	At Death's Door: Alternaria Pathogenicity Mechanisms. Plant Pathology Journal, 2008, 24, 101-111.	1.7	69
36	Aspergillus fumigatusmetabolism: Clues to mechanisms ofin vivofungal growth and virulence. Medical Mycology, 2009, 47, S72-S79.	0.7	68

#	Article	IF	CITATIONS
37	Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Molecular Microbiology, 2018, 107, 277-297.	2.5	68
38	A High Throughput Targeted Gene Disruption Method for Alternaria brassicicola Functional Genomics Using Linear Minimal Element (LME) Constructs. Molecular Plant-Microbe Interactions, 2006, 19, 7-15.	2.6	67
39	Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi?. Medical Mycology, 2010, 48, 1-15.	0.7	66
40	Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana. Fungal Genetics and Biology, 2004, 41, 115-128.	2.1	65
41	SREBP-Dependent Triazole Susceptibility in Aspergillus fumigatus Is Mediated through Direct Transcriptional Regulation of <i>erg11A</i> (<i>cyp51A</i>). Antimicrobial Agents and Chemotherapy, 2012, 56, 248-257.	3.2	65
42	Interleukin 1α Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infection and Immunity, 2017, 85, .	2.2	65
43	Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene, 2006, 383, 24-32.	2.2	63
44	Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22473-22483.	7.1	63
45	TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant and an Animal Fungal Pathogen. PLoS Pathogens, 2009, 5, e1000653.	4.7	62
46	Candida albicans Induces Arginine Biosynthetic Genes in Response to Host-Derived Reactive Oxygen Species. Eukaryotic Cell, 2013, 12, 91-100.	3.4	62
47	The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicolaâ †. Fungal Genetics and Biology, 2007, 44, 543-553.	2.1	58
48	Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. MBio, 2016, 7, .	4.1	58
49	Dsc Orthologs Are Required for Hypoxia Adaptation, Triazole Drug Responses, and Fungal Virulence in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 1557-1567.	3.4	54
50	Role of Granulocyte-Macrophage Colony-Stimulating Factor Signaling in Regulating Neutrophil Antifungal Activity and the Oxidative Burst During Respiratory Fungal Challenge. Journal of Infectious Diseases, 2016, 213, 1289-1298.	4.0	52
51	Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Molecular Plant Pathology, 2007, 8, 23-39.	4.2	46
52	Functional and Genomic Architecture of Borrelia burgdorferi -Induced Cytokine Responses in Humans. Cell Host and Microbe, 2016, 20, 822-833.	11.0	44
53	The Small GTPase RacA Mediates Intracellular Reactive Oxygen Species Production, Polarized Growth, and Virulence in the Human Fungal Pathogen Aspergillus fumigatus. Eukaryotic Cell, 2011, 10, 174-186.	3.4	42
54	Characterizing the Pathogenic, Genomic, and Chemical Traits of <i>Aspergillus fischeri</i> , a Close Relative of the Major Human Fungal Pathogen <i>Aspergillus fumigatus</i> . MSphere, 2019, 4, .	2.9	42

#	Article	IF	CITATIONS
55	<i>Aspergillus fumigatus</i> Calcipressin CbpA Is Involved in Hyphal Growth and Calcium Homeostasis. Eukaryotic Cell, 2009, 8, 511-519.	3.4	41
56	Cloning of a Gene Encoding an Alt a 1 Isoallergen Differentially Expressed by the Necrotrophic Fungus Alternaria brassicicola during Arabidopsis Infection. Applied and Environmental Microbiology, 2003, 69, 2361-2364.	3.1	40
57	Coordination of hypoxia adaptation and iron homeostasis in human pathogenic fungi. Frontiers in Microbiology, 2012, 3, 381.	3.5	39
58	<i>Aspergillus fumigatus</i> virulence through the lens of transcription factors: Table 1 Medical Mycology, 2017, 55, 24-38.	0.7	34
59	Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Scientific Reports, 2017, 7, 17096.	3.3	33
60	Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	4.1	33
61	Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Neglected Tropical Diseases, 2015, 9, e0004282.	3.0	32
62	Bioinformatic analysis of expressed sequence tags derived from a compatible Alternaria brassicicola-Brassica oleracea interaction. Molecular Plant Pathology, 2006, 7, 113-124.	4.2	30
63	Implications of hypoxic microenvironments during invasive aspergillosis. Medical Mycology, 2011, 49, S120-S124.	0.7	30
64	Large-Scale Transcriptional Response to Hypoxia in Aspergillus fumigatus Observed Using RNAseq Identifies a Novel Hypoxia Regulated ncRNA. Mycopathologia, 2014, 178, 331-339.	3.1	29
65	Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus. Microbiology (United Kingdom), 2014, 160, 2492-2506.	1.8	28
66	Polyphasic Characterization of Xanthomonas Strains from Onion. Phytopathology, 2004, 94, 184-195.	2.2	27
67	Host-Derived Leukotriene B4 Is Critical for Resistance against Invasive Pulmonary Aspergillosis. Frontiers in Immunology, 2017, 8, 1984.	4.8	27
68	Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. MBio, 2021, 12, e0176321.	4.1	26
69	<i>Aspergillus fumigatus</i> Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity. MBio, 2017, 8, .	4.1	25
70	Aspergillus fumigatus biofilms: Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathogens, 2021, 17, e1009794.	4.7	25
71	Beta-glucan-induced inflammatory monocytes mediate antitumor efficacy in the murine lung. Cancer Immunology, Immunotherapy, 2018, 67, 1731-1742.	4.2	24
72	RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in <i>Aspergillus fumigatus</i> . MSphere, 2016, 1, .	2.9	22

#	Article	IF	CITATIONS
73	An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. MSphere, 2019, 4, .	2.9	21
74	<i>Aspergillus fumigatus</i> Hsp90 interacts with the main components of the cell wall integrity pathway and cooperates in heat shock and cell wall stress adaptation. Cellular Microbiology, 2021, 23, e13273.	2.1	20
75	Endoplasmic reticulum localized <scp>PerA</scp> is required for cell wall integrity, azole drug resistance, and virulence in <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Molecular Microbiology, 2014, 92, 1279-1298.	2.5	18
76	Reducing Aspergillus fumigatus Virulence through Targeted Dysregulation of the Conidiation Pathway. MBio, 2020, 11, .	4.1	18
77	Hyperbaric Oxygen Reduces Aspergillus fumigatus Proliferation <i>In Vitro</i> and Influences <i>In Vivo</i> Disease Outcomes. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	16
78	MDA5 Is an Essential Sensor of a Pathogen-Associated Molecular Pattern Associated with Vitality That Is Necessary for Host Resistance against <i>Aspergillus fumigatus</i> . Journal of Immunology, 2020, 205, 3058-3070.	0.8	16
79	Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection. PLoS Pathogens, 2020, 16, e1008544.	4.7	16
80	Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. MBio, 2021, 12, e0215321.	4.1	16
81	Secretion stress and fungal pathogenesis. Virulence, 2011, 2, 1-3.	4.4	12
82	If looks could kill: Fungal macroscopic morphology and virulence. PLoS Pathogens, 2020, 16, e1008612.	4.7	11
83	A Heterogeneously Expressed Gene Family Modulates the Biofilm Architecture and Hypoxic Growth of <i>Aspergillus fumigatus</i> . MBio, 2021, 12, .	4.1	11
84	New advances in invasive aspergillosis immunobiology leading the way towards personalized therapeutic approaches. Cytokine, 2016, 84, 63-73.	3.2	10
85	Natamycin and Voriconazole Exhibit Synergistic Interactions with Nonantifungal Ophthalmic Agents against <i>Fusarium</i> Species Ocular Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
86	Aspergillus fumigatus Strain-Specific Conidia Lung Persistence Causes an Allergic Broncho-Pulmonary Aspergillosis-Like Disease Phenotype. MSphere, 2021, 6, .	2.9	9
87	Fungal cell wall dynamics and infection site microenvironments: signal integration and infection outcome. Current Opinion in Microbiology, 2013, 16, 385-390.	5.1	8
88	<i>In vivo veritas: Aspergillus fumigatus</i> proliferation and pathogenesis – conditionally speaking. Virulence, 2016, 7, 7-10.	4.4	8
89	CF-Seq, an accessible web application for rapid re-analysis of cystic fibrosis pathogen RNA sequencing studies. Scientific Data, 2022, 9, .	5.3	7
90	Is It Time To Kill the Survival Curve? A Case for Disease Progression Factors in Microbial Pathogenesis and Host Defense Research. MBio, 2021, 12, .	4.1	6

#	Article	IF	CITATIONS
91	Host Lung Environment Limits Aspergillus fumigatus Germination through an SskA-Dependent Signaling Response. MSphere, 2021, 6, e0092221.	2.9	6
92	Avian-associated <i>Aspergillus fumigatus</i> displays broad phylogenetic distribution, no evidence for host specificity, and multiple genotypes within epizootic events. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	6
93	An Alanine Aminotransferase Is Required for Biofilm-Specific Resistance of Aspergillus fumigatus to Echinocandin Treatment. MBio, 2022, 13, e0293321.	4.1	5
94	7th Advances Against Aspergillosis: Basic, diagnostic, clinical and therapeutic studies. Medical Mycology, 2017, 55, 1-3.	0.7	4
95	Biofilms: Five-Star Accommodations for the Aerobically Challenged. Current Biology, 2014, 24, R1002-R1004.	3.9	3
96	Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death― Science, 2018, 360, .	12.6	1
97	Detection of Low Oxygen Microenvironments in a Murine Model of Using. Methods in Molecular Biology, 2021, 2260, 197-205.	0.9	1
98	Genetic Regulation of Aspergillus Secondary Metabolites and Their Role in Fungal Pathogenesis. , 0, , 185-199.		1
99	The effect of reducing agents on challenge of rainbow trout with <i>AeromonasÂsalmonicida</i> . Journal of Fish Diseases, 2017, 40, 437-441.	1.9	0