Tomasz Kosmala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2407255/publications.pdf

Version: 2024-02-01

471509 580821 25 980 17 25 citations h-index g-index papers 26 26 26 1399 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	30.8	205
2	Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nature Catalysis, 2021, 4, 850-859.	34.4	81
3	Metallic Twin Boundaries Boost the Hydrogen Evolution Reaction on the Basal Plane of Molybdenum Selenotellurides. Advanced Energy Materials, 2018, 8, 1800031.	19.5	80
4	Chitosan-Derived Nitrogen-Doped Carbon Electrocatalyst for a Sustainable Upgrade of Oxygen Reduction to Hydrogen Peroxide in UV-Assisted Electro-Fenton Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 14425-14440.	6.7	78
5	Molecular Ordering at the Interface Between Liquid Water and Rutile TiO ₂ (110). Advanced Materials Interfaces, 2015, 2, 1500246.	3.7	68
6	Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 291, 120068.	20.2	62
7	Probing the correlation between Pt-support interaction and oxygen reduction reaction activity in mesoporous carbon materials modified with Pt-N active sites. Electrochimica Acta, 2018, 277, 287-300.	5.2	45
8	Surfaceâ^'Enhanced Polymerization via Schiff-Base Coupling at the Solidâ€"Water Interface under pH Control. Journal of Physical Chemistry C, 2015, 119, 19228-19235.	3.1	39
9	Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. Electrochimica Acta, 2020, 362, 137200.	5.2	36
10	Effect of Ni Doping on the MoS2 Structure and Its Hydrogen Evolution Activity in Acid and Alkaline Electrolytes. Surfaces, 2019, 2, 531-545.	2.3	34
11	Enhancing the Oxygen Electroreduction Activity through Electron Tunnelling: CoO _{<i>x</i>} Ultrathin Films on Pd(100). ACS Catalysis, 2018, 8, 2343-2352.	11.2	32
12	Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe–N–C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42693-42705.	8.0	31
13	Highly Efficient MoS ₂ /Ag ₂ S/Ag Photoelectrocatalyst Obtained from a Recycled DVD Surface. ACS Sustainable Chemistry and Engineering, 2018, 6, 7818-7825.	6.7	29
14	Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. ACS Catalysis, 2020, 10, 7475-7485.	11,2	28
15	Potential dependence of self-assembled porphyrin layers on a Cu(111) electrode surface: In-situ STM study. Surface Science, 2015, 631, 207-212.	1.9	22
16	Electrochemical Scanning Tunneling Microscopy Investigations of FeN ₄ â€Based Macrocyclic Molecules Adsorbed on Au(111) and Their Implications in the Oxygen Reduction Reaction. ChemElectroChem, 2020, 7, 1431-1437.	3.4	21
17	Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection. Joule, 2022, 6, 617-635.	24.0	20
18	Highly Graphitized Fe-N-C Electrocatalysts Prepared from Chitosan Hydrogel Frameworks. Catalysts, 2021, 11, 390.	3 . 5	15

#	ARTICLE	IF	CITATION
19	Porphyrin Layers at Cu/Au(111)–Electrolyte Interfaces: In Situ EC-STM Study. Topics in Catalysis, 2018, 61, 1335-1349.	2.8	13
20	In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water. Beilstein Journal of Nanotechnology, 2015, 6, 438-443.	2.8	9
21	Potential Driven Non-Reactive Phase Transitions of Ordered Porphyrin Molecules on Iodine-Modified Au(100): An Electrochemical Scanning Tunneling Microscopy (EC-STM) Study. Surfaces, 2018, 1, 12-28.	2.3	9
22	Strain Induced Phase Transition of WS2 by Local Dewetting of Au/Mica Film upon Annealing. Surfaces, 2021, 4, 1-8.	2.3	8
23	Interfacial chemistry and electroactivity of black phosphorus decorated with transition metals. Inorganic Chemistry Frontiers, 2021, 8, 684-692.	6.0	7
24	Porphyrin bi-layer formation induced by a surface confined reduction on an iodine-modified Au(100) electrode surface. Electrochimica Acta, 2020, 360, 137026.	5.2	4
25	One-pot synthesis of MoS2(1â^'x)Se2x on N-doped reduced graphene oxide: tailoring chemical and structural properties for photoenhanced hydrogen evolution reaction. Nanoscale Advances, 2020, 2, 4830-4840.	4.6	3