List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2406811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale, 2012, 4, 5300.	5.6	835
2	Amphiphilic Eggâ€Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angewandte Chemie - International Edition, 2012, 51, 9297-9301.	13.8	604
3	Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 2012, 48, 2692.	4.1	463
4	Versatile Bifunctional Magneticâ€Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display. Advanced Materials, 2011, 23, 2915-2919.	21.0	335
5	Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 2013, 1, 4925.	5.5	275
6	Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chemical Communications, 2012, 48, 8826.	4.1	244
7	A Grapheneâ€Based Bimorph Structure for Design of High Performance Photoactuators. Advanced Materials, 2015, 27, 7867-7873.	21.0	219
8	Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nature Communications, 2015, 6, 7258.	12.8	211
9	Electrically and Sunlightâ€Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite. Advanced Functional Materials, 2017, 27, 1704388.	14.9	211
10	High-quality CsPbBr ₃ perovskite nanocrystals for quantum dot light-emitting diodes. RSC Advances, 2017, 7, 10391-10396.	3.6	202
11	Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nature Communications, 2018, 9, 4573.	12.8	181
12	Triphase Microfluidicâ€Directed Selfâ€Assembly: Anisotropic Colloidal Photonic Crystal Supraparticles and Multicolor Patterns Made Easy. Angewandte Chemie - International Edition, 2012, 51, 2375-2378.	13.8	177
13	Versatile superhydrophobic and photocatalytic films generated from TiO ₂ –SiO ₂ @PDMS and their applications on fabrics. Journal of Materials Chemistry A, 2014, 2, 4178-4184.	10.3	169
14	Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Advanced Materials, 2019, 31, e1903733.	21.0	161
15	Facile Access to White Fluorescent Carbon Dots toward Light-Emitting Devices. Industrial & Engineering Chemistry Research, 2014, 53, 6417-6425.	3.7	159
16	Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes. Advanced Functional Materials, 2017, 27, 1702493.	14.9	144
17	Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2014, 2, 6477-6483.	5.5	139
18	Robust Selfâ€Healing Host–Guest Gels from Magnetocaloric Radical Polymerization. Advanced Functional Materials, 2014, 24, 1235-1242.	14.9	132

#	Article	IF	CITATIONS
19	Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Industrial & Engineering Chemistry Research, 2016, 55, 5335-5341.	3.7	129
20	High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Scientific Reports, 2017, 7, 43676.	3.3	120
21	Highâ€Performance Hierarchical Blackâ€Phosphorousâ€Based Soft Electrochemical Actuators in Bioinspired Applications. Advanced Materials, 2019, 31, e1806492.	21.0	118
22	In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. Journal of Materials Chemistry C, 2017, 5, 9398-9404.	5.5	115
23	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	6.7	114
24	Hydrophobic Poly(<i>tert</i> â€butyl acrylate) Photonic Crystals towards Robust Energyâ€Saving Performance. Angewandte Chemie - International Edition, 2019, 58, 13556-13564.	13.8	110
25	Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2014, 2, 4358-4373.	5.5	106
26	Large-scale colloidal films with robust structural colors. Materials Horizons, 2019, 6, 90-96.	12.2	106
27	Selfâ€Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities. Small, 2016, 12, 5074-5080.	10.0	105
28	Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti ₃ C ₂ T _{<i>x</i>} MXene Film Driven by Natural Sunlight Fluctuation. ACS Nano, 2021, 15, 5294-5306.	14.6	103
29	Epoxy Resin/Polyurethane Hybrid Networks Synthesized by Frontal Polymerization. Chemistry of Materials, 2006, 18, 2159-2163.	6.7	102
30	Largeâ€Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealant‣oaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blowâ€Spinning. Advanced Materials, 2020, 32, e2000982.	21.0	99
31	Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. Journal of Polymer Science Part A, 2005, 43, 1670-1680.	2.3	98
32	Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Advances, 2016, 6, 37189-37194.	3.6	98
33	Rapid and Large‣cale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105.	13.8	97
34	Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. Journal of Materials Science, 2013, 48, 6307-6311.	3.7	89
35	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 17465-17473.	13.8	89
36	Facile fabrication of tunable colloidal photonic crystal hydrogel supraballs toward a colorimetric humidity sensor. Journal of Materials Chemistry C, 2013, 1, 4685.	5.5	88

#	Article	IF	CITATIONS
37	One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes. Journal of Materials Science, 2013, 48, 2352-2357.	3.7	88
38	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie - International Edition, 2021, 60, 8585-8595.	13.8	88
39	A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application. Nanoscale, 2014, 6, 12703-12709.	5.6	87
40	Magnetic-Directed Assembly from Janus Building Blocks to Multiplex Molecular-Analogue Photonic Crystal Structures. Journal of the American Chemical Society, 2016, 138, 566-573.	13.7	87
41	Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8940-8946.	10.3	87
42	Self-contained Janus Aerogel with Antifouling and Salt-Rejecting Properties for Stable Solar Evaporation. ACS Applied Materials & amp; Interfaces, 2021, 13, 18829-18837.	8.0	86
43	Yellowâ€Emissive Carbon Dots with High Solidâ€State Photoluminescence. Advanced Functional Materials, 2022, 32, .	14.9	84
44	Robust Mechanochromic Elastic Oneâ€Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Advanced Optical Materials, 2014, 2, 652-662.	7.3	83
45	A Covalent Black Phosphorus/Metal–Organic Framework Heteroâ€nanostructure for Highâ€Performance Flexible Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 10366-10374.	13.8	82
46	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie - International Edition, 2021, 60, 20511-20517.	13.8	82
47	Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018, 6, 14112-14119.	10.3	80
48	Janus Suprabead Displays Derived from the Modified Photonic Crystals toward Temperature Magnetism and Optics Multiple Responses. ACS Applied Materials & Interfaces, 2015, 7, 8827-8833.	8.0	77
49	Selfâ€Powered UV–Near Infrared Photodetector Based on Reduced Graphene Oxide/n‣i Vertical Heterojunction. Small, 2016, 12, 5019-5026.	10.0	76
50	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIF‣(Zn)@Ti ₃ C ₂ T _{<i>x</i>} Core–Sheath Fibers for Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	76
51	Tunable Janus colloidal photonic crystal supraballs with dual photonic band gaps. Journal of Materials Chemistry C, 2014, 2, 9431-9438.	5.5	71
52	Microâ€Gel Ensembles for Accelerated Healing of Chronic Wound via pH Regulation. Advanced Science, 2022, 9, .	11.2	69
53	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	5.6	68
54	Conformal Microfluidicâ€Blowâ€Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO ₂ Reduction. Advanced Science, 2021, 8, e2101232.	11.2	68

#	Article	IF	CITATIONS
55	Microfluidicsâ€Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling. Small, 2020, 16, e1903939.	10.0	63
56	Interfacial Fabrication of Single-Crystalline ZnTe Nanorods with High Blue Fluorescence. Journal of the American Chemical Society, 2013, 135, 10618-10621.	13.7	62
57	Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs. Journal of Materials Science, 2014, 49, 7391-7398.	3.7	62
58	A Releaseâ€Induced Response for the Rapid Recognition of Latent Fingerprints and Formation of Inkjetâ€Printed Patterns. Angewandte Chemie - International Edition, 2011, 50, 3706-3709.	13.8	61
59	Anisotropic Boron–Carbon Heteroâ€Nanosheets for Ultrahigh Energy Density Supercapacitors. Angewandte Chemie - International Edition, 2020, 59, 23800-23809.	13.8	61
60	First solventâ€free synthesis of poly(<i>N</i> â€methylolacrylamide) via frontal freeâ€radical polymerization. Journal of Polymer Science Part A, 2007, 45, 4322-4330.	2.3	60
61	Fast synthesis of versatile nanocrystal-embedded hydrogels toward the sensing of heavy metal ions and organoamines. Journal of Materials Chemistry, 2011, 21, 1124-1129.	6.7	57
62	Magnetothermal Microfluidicâ€Assisted Hierarchical Microfibers for Ultrahighâ€Energyâ€Density Supercapacitors. Angewandte Chemie - International Edition, 2020, 59, 7934-7943.	13.8	57
63	Fiberâ€5pinningâ€Chemistry Method toward In Situ Generation of Highly Stable Halide Perovskite Nanocrystals. Advanced Science, 2019, 6, 1901694.	11.2	55
64	Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications. ACS Nano, 2021, 15, 9273-9298.	14.6	55
65	Advances in frontal polymerization strategy: From fundamentals to applications. Progress in Polymer Science, 2022, 127, 101514.	24.7	55
66	Synthesis of Nanocrystalâ^'Polymer Transparent Hybrids via Polyurethane Matrix Grafted onto Functionalized CdS Nanocrystals. Langmuir, 2007, 23, 850-854.	3.5	54
67	One-Step Synthesis of FA-Directing FAPbBr ₃ Perovskite Nanocrystals toward High-Performance Display. ACS Applied Materials & Interfaces, 2018, 10, 31603-31609.	8.0	54
68	Reduced Graphene Oxide Membrane Induced Robust Structural Colors toward Personal Thermal Management. ACS Photonics, 2019, 6, 116-122.	6.6	54
69	Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres. Journal of Materials Chemistry, 2010, 20, 6182.	6.7	52
70	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 39205-39213.	8.0	51
71	Controllable synthesis of ZnS/PMMA nanocomposite hybrids generated from functionalized ZnS quantum dots nanocrystals. Colloid and Polymer Science, 2007, 285, 1593-1600.	2.1	50
72	Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization. Journal of Materials Chemistry A, 2013, 1, 7326.	10.3	50

#	Article	IF	CITATIONS
73	An interface nanostructured array guided high performance electrochemical actuator. Journal of Materials Chemistry A, 2014, 2, 16836-16841.	10.3	50
74	Microfluidic‧pinningâ€Ðirected Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers. Advanced Functional Materials, 2015, 25, 7253-7262.	14.9	49
75	Facile synthesis of poly(hydroxyethyl acrylate) by frontal free-radical polymerization. Journal of Polymer Science Part A, 2007, 45, 873-881.	2.3	47
76	Microfluidicâ€Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Microâ€Energyâ€Storage. Advanced Science, 2020, 7, 1901931.	11.2	47
77	Carbon dots promoted photonic crystal for optical information storage and sensing. Chemical Engineering Journal, 2021, 415, 128950.	12.7	47
78	Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS Nano, 2022, 16, 10130-10155.	14.6	47
79	Facile synthesis of fluorescent quantum dotâ€polymer nanocomposites via frontal polymerization. Journal of Polymer Science Part A, 2010, 48, 2170-2177.	2.3	45
80	Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer. Colloid and Polymer Science, 2004, 283, 66-73.	2.1	43
81	Frontal free-radical copolymerization of urethane–acrylates. Journal of Polymer Science Part A, 2006, 44, 3018-3024.	2.3	43
82	Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays. ACS Applied Materials & Interfaces, 2019, 11, 42629-42634.	8.0	43
83	Robust Self-Healing Hydrogels Assisted by Cross-Linked Nanofiber Networks. Scientific Reports, 2013, 3, 2811.	3.3	42
84	Ordered and Active Nanochannel Electrode Design for Highâ€Performance Electrochemical Actuator. Small, 2016, 12, 4986-4992.	10.0	42
85	Fabrication of crack-free photonic crystal films via coordination of microsphere terminated dendrimers and their performance in invisible patterned photonic displays. Journal of Materials Chemistry C, 2016, 4, 8765-8771.	5.5	42
86	Microfluidic-Directed Hydrogel Fabrics Based on Interfibrillar Self-Healing Effects. Chemistry of Materials, 2018, 30, 8822-8828.	6.7	42
87	A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. Journal of Materials Chemistry C, 2019, 7, 6879-6888.	5.5	42
88	Multicolored Mixed-Organic-Cation Perovskite Quantum Dots (FA _{<i>x</i>} MA _{1–<i>x</i>} PbX ₃ , X = Br and I) for White Light-Emitting Diodes. Industrial & Engineering Chemistry Research, 2017, 56, 10053-10059.	3.7	41
89	Versatile Hydrogel Ensembles with Macroscopic Multidimensions. Advanced Materials, 2018, 30, 1803475.	21.0	41
90	Solventâ€free freeâ€radical frontal polymerization: A new approach to quickly synthesize poly(<i>N</i> â€vinylpyrrolidone). Journal of Polymer Science Part A, 2008, 46, 2177-2185.	2.3	39

#	Article	IF	CITATIONS
91	Microarrays Formed by Microfluidic Spinning as Multidimensional Microreactors. Angewandte Chemie - International Edition, 2014, 53, 3988-3992.	13.8	39
92	Facile synthesis of <i>N</i> â€vinylimidazoleâ€based hydrogels via frontal polymerization and investigation of their performance on adsorption of copper ions. Journal of Polymer Science Part A, 2010, 48, 4005-4012.	2.3	38
93	Construction of Highly Luminescent CdTe/CdS@ZnS–SiO ₂ Quantum Dots as Conversion Materials toward Excellent Color-Rendering White-Light-Emitting Diodes. Industrial & Engineering Chemistry Research, 2014, 53, 16763-16770.	3.7	38
94	MOF-Based Photonic Crystal Film toward Separation of Organic Dyes. ACS Applied Materials & Interfaces, 2020, 12, 2816-2825.	8.0	38
95	Reinforcement of polysiloxane with superhydrophobic nanosilica. Journal of Materials Science, 2009, 44, 4522-4530.	3.7	37
96	Facile and quick synthesis of poly(N â€methylolacrylamide)/polyhedral oligomeric silsesquioxane graft copolymer hybrids via frontal polymerization. Journal of Polymer Science Part A, 2009, 47, 1136-1147.	2.3	37
97	Facile synthesis of amphiphilic gels by frontal freeâ€radical polymerization. Journal of Polymer Science Part A, 2010, 48, 823-831.	2.3	37
98	Multiple-structured nanocrystals towards bifunctional photoluminescent-superhydrophobic surfaces. Journal of Materials Chemistry, 2010, 20, 3863.	6.7	37
99	Multifunctional Soft Actuators Based on Anisotropic Paper/Polymer Bilayer Toward Bioinspired Applications. Advanced Materials Technologies, 2019, 4, 1800674.	5.8	37
100	Multifunctional Hydrogels with Temperature, Ion, and Magnetocaloric Stimuliâ€Responsive Performances. Macromolecular Rapid Communications, 2016, 37, 759-768.	3.9	36
101	Microfluidic‧pinningâ€Directed Conductive Fibers toward Flexible Micro‧upercapacitors. Macromolecular Materials and Engineering, 2018, 303, 1700664.	3.6	36
102	Facile fabrication of novel konjac glucomannan films with antibacterial properties via microfluidic spinning strategy. Carbohydrate Polymers, 2019, 208, 469-476.	10.2	36
103	Covalently Aligned Molybdenum Disulfide–Carbon Nanotubes Heteroarchitecture for Highâ€Performance Electrochemical Capacitors. Angewandte Chemie - International Edition, 2021, 60, 21295-21303.	13.8	36
104	Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. ACS Applied Materials & amp; Interfaces, 2018, 10, 30785-30793.	8.0	35
105	Crystal Transformation from the Incorporation of Coordinate Bonds into a Hydrogen-Bonded Network Yields Robust Free-Standing Supramolecular Membranes. Journal of the American Chemical Society, 2020, 142, 479-486.	13.7	35
106	Structure and properties of polyurethane/polyacrylate latex interpenetrating networks hybrid emulsions. Colloid and Polymer Science, 2003, 282, 14-20.	2.1	34
107	Investigation of redox initiators for free radical frontal polymerization. Polymer International, 2009, 58, 851-857.	3.1	33
108	<i>In situ</i> access to white lightâ€emitting fluorescent polymer nanocomposites via plasmaâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2012, 50, 3736-3742.	2.3	33

#	Article	IF	CITATIONS
109	Facile access to versatile hydrogels via interface-directed frontal polymerization derived from the magnetocaloric effect. Journal of Materials Chemistry A, 2015, 3, 17351-17358.	10.3	33
110	Graphene Fiberâ€Based Wearable Supercapacitors: Recent Advances in Design, Construction, and Application. Small Methods, 2021, 5, e2100502.	8.6	33
111	Controllable synthesis of quantum dot–polymer networks with enhanced luminescence via the catalytic chain transfer polymerization (CCTP) technique. Journal of Materials Chemistry, 2008, 18, 5599.	6.7	32
112	(C ₂ H ₈ N) ₉ [Eu ₅ (SO ₄) ₁₂]·2H <sub the first europium sulfate open-framework containing two kinds of intersecting extra-large 20-membered ring channels. CrystEngComm, 2010, 12, 694-696.</sub 	>2 2.6	0: 32
113	Multifunctional ionomer-derived honeycomb-patterned architectures and their performance in light enhancement of light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 4089.	6.7	32
114	Highly Enhanced Luminescence Performance of LEDs via Controllable Layer‧tructured 3D Photonic Crystals and Photonic Crystal Beads. Small Methods, 2018, 2, 1800104.	8.6	32
115	Facile fabrication of superhydrophobic surface from micro/nanostructure metal alkanethiolate based films. Chemical Communications, 2007, , 1919.	4.1	31
116	Facile Access to Graphene Oxide from Ferro-Induced Oxidation. Scientific Reports, 2016, 6, 17071.	3.3	31
117	Patterned Arrays of Supramolecular Microcapsules. Advanced Functional Materials, 2018, 28, 1800550.	14.9	31
118	Available Plasma-Ignited Frontal Polymerization Approach toward Facile Fabrication of Functional Polymer Hydrogels. Chemistry of Materials, 2010, 22, 5653-5659.	6.7	30
119	A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane. Journal of Materials Chemistry A, 2015, 3, 24333-24337.	10.3	30
120	Interfacial synthesis of SnSe quantum dots for sensitized solar cells. RSC Advances, 2015, 5, 2155-2158.	3.6	30
121	Fabrication and characterization of TiO2–SiO2 composite nanoparticles and polyurethane/(TiO2–SiO2) nanocomposite films. Colloid and Polymer Science, 2007, 285, 1515-1520.	2.1	29
122	Facile fabrication of structure-tunable bead-shaped hybrid microfibers using a Rayleigh instability guiding strategy. Chemical Communications, 2015, 51, 17525-17528.	4.1	29
123	Highly sensitive mechanochromic photonic gel towards fast- responsive fingerprinting. RSC Advances, 2017, 7, 33258-33262.	3.6	29
124	3D Printed Biocatalytic Living Materials with Dualâ€Network Reinforced Bioinks. Small, 2022, 18, e2104820.	10.0	29
125	Dendrimer-induced colloids towards robust fluorescent photonic crystal films and high performance WLEDs. Journal of Materials Chemistry C, 2018, 6, 8187-8193.	5.5	28
126	Interfacial Polymetallic Oxides and Hierarchical Porous Coreâ€5hell Fibres for High Energyâ€Density Electrochemical Supercapacitors. Angewandte Chemie - International Edition, 2022, , .	13.8	27

#	Article	IF	CITATIONS
127	Construction of Hydrogen-Bond-Assisted Crack-Free Photonic Crystal Films and Their Performance on Fluorescence Enhancement Effect. Macromolecular Materials and Engineering, 2017, 302, 1700013.	3.6	26
128	Autonomous micromotor based on catalytically pneumatic behavior of balloon-like MnOx–graphene crumples. Chemical Communications, 2014, 50, 7157.	4.1	25
129	Fast fabrication of superabsorbent polyampholytic nanocomposite hydrogels via plasma-ignited frontal polymerization. Journal of Polymer Science Part A, 2014, 52, 912-920.	2.3	24
130	Microfluidic printing directing photonic crystal bead 2D code patterns. Journal of Materials Chemistry C, 2018, 6, 2336-2341.	5.5	24
131	A Phase Inversionâ€Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin. Angewandte Chemie - International Edition, 2021, 60, 25089-25096.	13.8	24
132	Novel Erythrocyte-like Graphene Microspheres with High Quality and Mass Production Capability via Electrospray Assisted Self-Assembly. Scientific Reports, 2013, 3, 3327.	3.3	23
133	Construction of Ag-doped Zn–In–S quantum dots toward white LEDs and 3D luminescent patterning. RSC Advances, 2016, 6, 47616-47622.	3.6	23
134	Cu–In–S/ZnS Quantum Dots Embedded in Polyvinylpyrrolidone (PVP) Solids for White Light-Emitting Diodes (LEDs). Industrial & Engineering Chemistry Research, 2016, 55, 11700-11705.	3.7	23
135	Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique. Materials Letters, 2019, 242, 179-182.	2.6	23
136	Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 4244-4249.	5.5	23
137	Photonic Plasticines with Uniform Structural Colors, High Processability, and Selfâ€Healing Properties. Small, 2021, 17, e2007426.	10.0	23
138	Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration, 2022, 2, 20210131.	11.0	23
139	Versatile dendrimer-derived nanocrystal microreactors towards fluorescence colloidal photonic crystals. Journal of Materials Chemistry C, 2014, 2, 3610-3616.	5.5	22
140	Magnetothermal Microfluidicâ€Assisted Hierarchical Microfibers for Ultrahighâ€Energyâ€Density Supercapacitors. Angewandte Chemie, 2020, 132, 8008-8017.	2.0	22
141	Versatile titanium dioxide inverse opal composite photonic hydrogel films towards multi-solvents chip sensors. Sensors and Actuators B: Chemical, 2021, 347, 130639.	7.8	22
142	Novel electromechanical actuation based on a spongy graphene paper. Chemical Communications, 2014, 50, 4951.	4.1	21
143	Wavelength-selective and rebound-able bimorph photoactuator driven by a dynamic mass transport process. Journal of Materials Chemistry C, 2015, 3, 1888-1892.	5.5	21
144	Microfluidic-Oriented Synthesis of Graphene Oxide Nanosheets toward High Energy Density Supercapacitors. Energy & Fuels, 2020, 34, 11519-11526.	5.1	21

#	Article	IF	CITATIONS
145	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
146	InÂsitu synthesis of transparent fluorescent ZnS–polymer nanocomposite hybrids through catalytic chain transfer polymerization technique. Journal of Materials Science, 2009, 44, 3413-3419.	3.7	20
147	Synthesis of new superhydrophobic nanosilica and investigation of their performance in reinforcement of polysiloxane. Polymer Composites, 2010, 31, 1628-1636.	4.6	20
148	Macromonomer-induced CdTe quantum dots toward multicolor fluorescent patterns and white LEDs. RSC Advances, 2012, 2, 9005.	3.6	20
149	High performance of interpenetrating polymer network hydrogels induced by frontal polymerization. Colloid and Polymer Science, 2013, 291, 1871-1879.	2.1	20
150	Direct Synthesis of Multicolor Fluorescent Hollow Carbon Spheres Encapsulating Enriched Carbon Dots. Scientific Reports, 2016, 6, 19382.	3.3	20
151	Fabrication of ordered konjac glucomannan microfiber arrays via facile microfluidic spinning method. Materials Letters, 2017, 196, 410-413.	2.6	20
152	Anisotropic Biphase Frontal Polymerization toward <i>in Situ</i> Generation of Dual-Component Polymers. Macromolecules, 2015, 48, 5543-5549.	4.8	19
153	Facile access to poly(DMAEMA-co-AA) hydrogels via infrared laser-ignited frontal polymerization and their polymerization in the horizontal direction. RSC Advances, 2015, 5, 30514-30521.	3.6	19
154	The fabrication of 2D and 3D photonic crystal arrays towards high performance recognition of metal ions and biomolecules. Journal of Materials Chemistry C, 2016, 4, 1398-1404.	5.5	19
155	Synthesis of quantum dots based on microfluidic technology. Current Opinion in Chemical Engineering, 2020, 29, 34-41.	7.8	19
156	Synthesis of poly(N-methylolacrylamide)/polymethylacrylamide hybrids via frontal free-radical polymerization. Colloid and Polymer Science, 2007, 285, 891-898.	2.1	18
157	A facile pathway for the fast synthesis of colloidal crystalâ€loaded hydrogels via frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 3121-3128.	2.3	18
158	Rapid synthesis of poly(HPAâ€ <i>co</i> â€VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasmaâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 5217-5226.	2.3	18
159	A facile synthesis of self-healing hydrogels toward flexible quantum dot-based luminescent solar concentrators and white LEDs. Journal of Materials Chemistry C, 2019, 7, 10988-10995.	5.5	18
160	Multistimulus-Responsive Graphene Oxide/Fe ₃ O ₄ /Starch Soft Actuators. ACS Applied Materials & Interfaces, 2022, 14, 16772-16779.	8.0	18
161	Second structural directing agent induces the formation of 1D organic templated terbium sulfate. CrystEngComm, 2011, 13, 2714.	2.6	17
162	Nitrogen-doped carbon dots derived from polyamindoamine dendrimer. RSC Advances, 2016, 6, 59702-59707.	3.6	17

#	Article	IF	CITATIONS
163	Generation of a carbon dots/ammonium persulfate redox initiator couple for free radical frontal polymerization. Polymer Chemistry, 2018, 9, 420-427.	3.9	17
164	Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances. Journal of Hazardous Materials, 2019, 361, 329-337.	12.4	17
165	Frontal Polymerization-Oriented Self-Healing Hydrogels and Applications toward Temperature-Triggered Actuators. Industrial & Engineering Chemistry Research, 2019, 58, 3885-3892.	3.7	17
166	Construction of triple non-covalent interaction-based ultra-strong self-healing polymeric gels <i>via</i> frontal polymerization. Journal of Materials Chemistry C, 2020, 8, 14083-14091.	5.5	17
167	Largeâ€5cale Production of Ligandâ€Engineered Robust Lead Halide Perovskite Nanocrystals by a Dropletâ€Based Microreactor System. Small, 2022, 18, e2200740.	10.0	17
168	Facile Bulk Synthesis of Homogeneous and Transparent Nanocrystals Hybrids via In Situ Transformation of Ionomers into CdS Quantum-Dot-Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 374-381.	3.7	16
169	Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid and Polymer Science, 2014, 292, 2529-2537.	2.1	16
170	Fabrication of highly fluorescent CdSe quantum dots via solvent-free microfluidic spinning microreactors. RSC Advances, 2015, 5, 107804-107810.	3.6	16
171	Self-Healing Hydrogel toward Metal Ion Rapid Removal via Available Solar-Driven Fashion. Industrial & Engineering Chemistry Research, 2019, 58, 17067-17074.	3.7	16
172	Robust Nanofiber Films Prepared by Electroâ€Microfluidic Spinning for Flexible Highly Stable Quantumâ€Đot Displays. Advanced Electronic Materials, 2021, 7, 2000626.	5.1	16
173	Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots. Nanoscale, 2020, 12, 19953-19962.	5.6	15
174	Fe/Zn double metal cyanide catalyzed ring-opening polymerization of propylene oxide: 2. Characterization of active structure of double metal cyanide catalysts. Colloid and Polymer Science, 2004, 282, 1033-1038.	2.1	14
175	Facile synthesis of poly(DMCâ€ <i>co</i> â€HPA) hydrogels via infrared laser ignited frontal polymerization and their adsorption–desorption switching performance. Journal of Polymer Science Part A, 2015, 53, 2085-2093.	2.3	14
176	Interface-spawned NiSe quantum dots: preparation, photoluminescence properties and applications. Journal of Materials Chemistry C, 2015, 3, 473-478.	5.5	14
177	Facile synthesis of selfâ€healing gel via magnetocaloric bottomâ€ignited frontal polymerization. Journal of Polymer Science Part A, 2017, 55, 2585-2593.	2.3	14
178	Frontal polymerization for smart intrinsic selfâ€healing hydrogels and its integration with microfluidics. Journal of Polymer Science Part A, 2018, 56, 1412-1423.	2.3	14
179	Hydrophobic Poly(tert â€butyl acrylate) Photonic Crystals towards Robust Energy‣aving Performance. Angewandte Chemie, 2019, 131, 13690-13698.	2.0	14
180	Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly. Journal of Materials Chemistry, 2011, 21, 8496.	6.7	13

#	Article	IF	CITATIONS
181	In situ access to fluorescent dual-component polymers towards optoelectronic devices via inhomogeneous biphase frontal polymerization. RSC Advances, 2015, 5, 102294-102299.	3.6	13
182	Hierarchical Microâ€Mesoporous Carbonâ€Frameworkâ€Based Hybrid Nanofibres for Highâ€Density Capacitive Energy Storage. Angewandte Chemie, 2019, 131, 17626-17634.	2.0	13
183	Cascade alkylation and deuteration with aryl iodides <i>via</i> Pd/norbornene catalysis: an efficient method for the synthesis of congested deuterium-labeled arenes. Chemical Communications, 2019, 55, 8567-8570.	4.1	13
184	Robust Self-Healing Magnetically Induced Colloidal Photonic Crystal Hydrogels. ACS Applied Polymer Materials, 2020, 2, 448-454.	4.4	13
185	Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chemical Engineering Journal, 2021, 405, 126539.	12.7	13
186	In Situ Synthesis of Robust Polyvinylpyrrolidone-Based Perovskite Nanocrystal Powders by the Fiber-Spinning Chemistry Method and Their Versatile 3D Printing Patterns. ACS Applied Materials & Interfaces, 2021, 13, 39748-39754.	8.0	13
187	Anisotropic Boron–Carbon Heteroâ€Nanosheets for Ultrahigh Energy Density Supercapacitors. Angewandte Chemie, 2020, 132, 24008-24017.	2.0	12
188	Microfluidic spinning-induced heterotypic bead-on-string fibers for dual-cargo release and wound healing. Journal of Materials Chemistry B, 2021, 9, 2727-2735.	5.8	12
189	Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors. Chemical Engineering Journal, 2022, 440, 135878.	12.7	12
190	Herbages-derived fluorescent carbon dots and CdTe/carbon ensembles for patterning. Journal of Materials Science, 2016, 51, 8108-8115.	3.7	11
191	Ultrasensitive responsive photonic crystal films derived from the assembly between similarly charged colloids and substrates towards trace electrolyte sensing. Journal of Materials Chemistry C, 2016, 4, 6750-6755.	5.5	11
192	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	2.0	11
193	A Covalent Black Phosphorus/Metal–Organic Framework Heteroâ€nanostructure for Highâ€Performance Flexible Supercapacitors. Angewandte Chemie, 2021, 133, 10454-10462.	2.0	11
194	Ordered Interface Engineering Enabled High-Performance Ti ₃ C ₂ T _{<i>x</i>} MXene Fiber-Based Supercapacitors. Energy & Fuels, 2022, 36, 7898-7907.	5.1	11
195	Macroscopic Self-Assembly of Gel-Based Microfibers toward Functional Nonwoven Fabrics. ACS Applied Materials & Interfaces, 2020, 12, 50823-50833.	8.0	10
196	Magnetothermal microfluidic-directed synthesis of quantum dots. Journal of Materials Chemistry C, 2020, 8, 6358-6363.	5.5	10
197	Solarâ€Initiated Frontal Polymerization of Photothermic Hydrogels with High Swelling Properties for Efficient Water Evaporation. Solar Rrl, 2022, 6, 2100917.	5.8	10
198	Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy & Fuels, 2022, 36, 4708-4727.	5.1	10

#	Article	lF	CITATIONS
199	Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest–host ensembles. Nanotechnology, 2013, 24, 135602.	2.6	9
200	Preparation of heterostructure quantum dots towards wide-colour-gamut display. Materials Letters, 2019, 254, 171-174.	2.6	9
201	The Rapid and Large cale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie, 2021, 133, 8668-8678.	2.0	9
202	Rapid visualized hydrophobic-force-driving self-assembly towards brilliant photonic crystals. Chemical Engineering Journal, 2021, 420, 127582.	12.7	9
203	Controllable fabrication of nanocrystal-polymer hybrids via the catalytic chain transfer polymerization process. Colloid and Polymer Science, 2009, 287, 829-837.	2.1	8
204	Chemical synthesis and optical properties of CdS–poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid and Polymer Science, 2011, 289, 395-400.	2.1	8
205	Electrospun fluorescein-embedded nanofibers towards fingerprint recognition and luminescent patterns. RSC Advances, 2013, 3, 19403.	3.6	8
206	Supramolecular Gels: Robust Self-Healing Host-Guest Gels from Magnetocaloric Radical Polymerization (Adv. Funct. Mater. 9/2014). Advanced Functional Materials, 2014, 24, 1234-1234.	14.9	8
207	Highly Crystallized Brilliant Polymeric Photonic Crystals via Repulsionâ€Induced Precipitation Assembly toward Multiresponsive Colorimetric Films. Macromolecular Materials and Engineering, 2016, 301, 1363-1373.	3.6	8
208	Actuators: Highâ€Performance Hierarchical Blackâ€Phosphorousâ€Based Soft Electrochemical Actuators in Bioinspired Applications (Adv. Mater. 25/2019). Advanced Materials, 2019, 31, 1970181.	21.0	8
209	Fast access to core/shell/shell CdTe/CdSe/ZnO quantum dots via magnetic hyperthermia method. AICHE Journal, 2016, 62, 2614-2621.	3.6	7
210	Synthesis and Characterization of pHâ€sensitive Poly(IAâ€coâ€AAcâ€coâ€AAm) Hydrogels via Frontal Polymerization. Journal of Polymer Science Part A, 2019, 57, 2214-2221.	2.3	7
211	Fabrication of magnetically driven photonic crystal fiber film via microfluidic blow-spinning towards dynamic biomimetic butterfly. Materials Letters, 2021, 291, 129450.	2.6	7
212	Facile fabrication of fluorescent-superhydrophobic bifunctional ligand-free quantum dots. Colloid and Polymer Science, 2013, 291, 717-723.	2.1	6
213	Sessile Microdropletâ€Based Writing Board for Patterning of Structural Colored Hydrogels. Advanced Materials Interfaces, 2021, 8, 2001201.	3.7	6
214	Rapid Fabrication of Patterned Gels via Microchannel Conformal Frontal Polymerization. Macromolecular Rapid Communications, 2021, 42, 2100421.	3.9	6
215	Carbon Dot-Functionalized Colloidal Particles for Patterning and Controllable Layer-Structured Photonic Crystals Construction. ACS Applied Polymer Materials, 2021, 3, 6130-6137.	4.4	6
216	Rapid Preparation of Dual Cross-Linked Mechanical Strengthening Hydrogels via Frontal Polymerization for use as Shape Deformable Actuators. ACS Applied Polymer Materials, 2022, 4, 1457-1465.	4.4	6

#	Article	IF	CITATIONS
217	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIFâ€L(Zn)@Ti ₃ C ₂ T _{<i>x</i>} Core–Sheath Fibers for Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie, 2022, 134, .	2.0	6
218	Interfacial Polymetallic Oxides and Hierarchical Porous Core–Shell Fibres for High Energyâ€Đensity Electrochemical Supercapacitors. Angewandte Chemie, 2022, 134, .	2.0	6
219	Facile access to versatile N-vinylimidazole-based artificial tongue-like polymer gels. Soft Matter, 2013, 9, 3809.	2.7	5
220	Electrostatic fabrication of RGO-g-SSS/CdTe graphene/quantum dot nanocomposites with enhanced optoelectronic properties. RSC Advances, 2016, 6, 65443-65449.	3.6	5
221	Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors. Nanoscale Advances, 2019, 1, 3614-3620.	4.6	5
222	Armored colloidal photonic crystals for solar evaporation. Nanoscale, 2021, 13, 16189-16196.	5.6	5
223	Covalently Aligned Molybdenum Disulfide–Carbon Nanotubes Heteroarchitecture for Highâ€Performance Electrochemical Capacitors. Angewandte Chemie, 2021, 133, 21465-21473.	2.0	5
224	A Phase Inversionâ€Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin. Angewandte Chemie, 2021, 133, 25293.	2.0	5
225	Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligandâ€Free Perovskite Quantum Dots. Angewandte Chemie, 2022, 134, .	2.0	5
226	Synthesis of fluorescent carbon dots from one-step pyrolysis of frontal-polymerized poly(acrylamide-co-4-vinylpyridine). Applied Physics A: Materials Science and Processing, 2014, 117, 1583-1588.	2.3	4
227	Synthesis of versatile poly(PMMAâ€bâ€VI) macromonomerâ€based hydrogels via infrared laser ignited frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 1210-1221.	2.3	4
228	Microfluidic-assisted assembly of fluorescent self-healing gel particles toward dual-signal sensors. Journal of Materials Science, 2021, 56, 14832-14843.	3.7	4
229	A microfluidicsâ€dispensingâ€printing strategy for Janus photonic crystal microspheres towards smart patterned displays. Journal of Polymer Science, 0, , .	3.8	4
230	Facile synthesis of self-healing gels via frontal polymerization toward acid–base regulatable wound dressing. Journal of Materials Science, 2022, 57, 12971-12984.	3.7	4
231	Microfluidic assembly of uniform fluorescent microbeads from quantumâ€dotâ€loaded fluorineâ€containing microemulsion. Polymer International, 2014, 63, 1953-1958.	3.1	3
232	Self-Replication Fabrication of Ligand-Free CdSe Quantum Dots on a Nanofiber Microreactor via a Solid–Liquid Interfacial Method. Industrial & Engineering Chemistry Research, 2014, 53, 8753-8758.	3.7	3
233	New insights into the phosphine-free synthesis of ultrasmall Cu2â~'xSe nanocrystals at the liquid–liquid interface. RSC Advances, 2015, 5, 90705-90711.	3.6	3
234	Autonomous conveyer gel driven by frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 1323-1331.	2.3	3

#	Article	IF	CITATIONS
235	Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	3
236	Actuators: Electrically and Sunlightâ€Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite (Adv. Funct. Mater. 44/2017). Advanced Functional Materials, 2017, 27, .	14.9	3
237	Macroscopic Selfâ€Assembly: Versatile Hydrogel Ensembles with Macroscopic Multidimensions (Adv.) Tj ETQq1 1	0,784314 21,0	4 rgBT /Over
238	Green and high yield synthesis of CdTe@Hydrotalcite nanocrystals with enhanced photoluminescence stability toward white light emitting diodes. Journal of Luminescence, 2020, 228, 117625.	3.1	3
239	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie, 2021, 133, 20674-20680.	2.0	3
240	Progress in carbon nanotube and graphene based artificial muscles. Chinese Science Bulletin, 2014, 59, 2240-2252.	0.7	3
241	Phase Transfer Mediated Self-Assembly of CdTe–Polymer Nanohybrids for Uniform Fluorescent Films. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 570-575.	3.7	2
242	Electrochromic performances and photoluminescence characteristics of versatile N-vinylimidazole-based hybrid hydrogels. Colloid and Polymer Science, 2012, 290, 371-377.	2.1	2
243	Fabrication of superhydrophobic surface from binary micro-/nano-structure of mullite-whisk-based films. Applied Physics A: Materials Science and Processing, 2013, 113, 591-596.	2.3	2
244	Microfluidic Spinning: Microfluidic-Spinning-Directed Microreactors Toward Generation of Multiple Nanocrystals Loaded Anisotropic Fluorescent Microfibers (Adv. Funct. Mater. 47/2015). Advanced Functional Materials, 2015, 25, 7396-7396.	14.9	2
245	Infrared laserâ€ignited horizontal frontal polymerization of versatile unsaturated polyester resins. Journal of Applied Polymer Science, 2018, 135, 45935.	2.6	2
246	Constructing honeycomb architectures from polymer carbon dot composites for luminous efficacy enhancement of LEDs. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	2
247	Microfluidic-directed assembly of uniform fluorescent supraballs from CdTe nanocrystals-loaded acrylosilane microemulsion. Colloid and Polymer Science, 2013, 291, 2147-2154.	2.1	1
248	Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	1
249	Hydrogels: Robust Mechanochromic Elastic One-Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays (Advanced Optical Materials 7/2014). Advanced Optical Materials, 2014, 2, 651-651.	7.3	1
250	In situ preparation of graphene oxide–CdTe nanocomposites with interesting optical properties. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1
251	Probing superficial and mechanical behaviors of nanosilica incorporated poly(acrylate) hybrid latexes. E-Polymers, 2010, 10, .	3.0	0
252	Wearable Devices: Highâ€Performance Wearable Microâ€6upercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes (Adv. Funct. Mater. 36/2017). Advanced Functional Materials, 2017, 27, .	14.9	0

#	Article	IF	CITATIONS
253	Frontispiece: Covalently Aligned Molybdenum Disulfide–Carbon Nanotubes Heteroarchitecture for Highâ€Performance Electrochemical Capacitors. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
254	Frontispiz: Covalently Aligned Molybdenum Disulfide–Carbon Nanotubes Heteroarchitecture for Highâ€Performance Electrochemical Capacitors. Angewandte Chemie, 2021, 133, .	2.0	0