Yuriy Roman-Leshkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2406630/publications.pdf

Version: 2024-02-01

143 papers 19,314 citations

65 h-index 136 g-index

179 all docs

179 docs citations

179 times ranked

16431 citing authors

#	Article	IF	CITATIONS
1	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy and Environmental Science, 2022, 15, 938-990.	15.6	93
2	Electrochemical Activation of $\text{Câ}^{2}\text{C}$ Bonds through Mediated Hydrogen Atom Transfer Reactions. ChemSusChem, 2022, 15, .	3.6	15
3	Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nature Materials, 2022, 21, 673-680.	13.3	123
4	The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 301-324.	3.3	46
5	Non-Faradaic Electrochemical Promotion of BrÃ,nsted Acid-Catalyzed Dehydration Reactions over Molybdenum Oxide. ACS Catalysis, 2022, 12, 906-912.	5 . 5	6
6	Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structureâ€Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
7	Tuning the Catalytic Activity of Fe-Phthalocyanine-Based Catalysts for the Oxygen Reduction Reaction by Ligand Functionalization. ACS Catalysis, 2022, 12, 7278-7287.	5. 5	30
8	Repurposing Templates for Zeolite Synthesis from Simulations and Data Mining. Chemistry of Materials, 2022, 34, 5366-5376.	3.2	5
9	Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. Journal of Chemical Theory and Computation, 2022, 18, 4282-4292.	2.3	9
10	Multi-pass flow-through reductive catalytic fractionation. Joule, 2022, 6, 1859-1875.	11.7	20
11	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416
12	Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions. Jacs Au, $2021,1,8$ -12.	3 . 6	179
13	Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. Energy and Environmental Science, 2021, 14, 4147-4168.	15.6	106
14	Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 623-628.	3 . 2	85
15	A Career in Catalysis: James A. Dumesic. ACS Catalysis, 2021, 11, 2310-2339.	5 . 5	5
16	Accelerated Synthesis of a Ni ₂ Cl ₂ (BTDD) Metal–Organic Framework in a Continuous Flow Reactor for Atmospheric Water Capture. ACS Sustainable Chemistry and Engineering, 2021, 9, 3996-4003.	3.2	26
17	Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks. ACS Central Science, 2021, 7, 858-867.	5. 3	57
18	High-throughput analysis of contact angle goniometry data using DropPy. SoftwareX, 2021, 14, 100665.	1.2	2

#	Article	IF	Citations
19	Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metalâ^'Liquid Interfaces. ACS Central Science, 2021, 7, 1045-1055.	5.3	30
20	Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11661-11666.	3.2	110
21	Breaking the Selectivity-Conversion Limit of Partial Methane Oxidation with Tandem Heterogeneous Catalysts. ACS Catalysis, 2021, 11, 9262-9270.	5.5	8
22	Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 2021, 4, 539-556.	16.1	420
23	A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science, 2021, 374, 308-315.	6.0	90
24	Flow-through solvolysis enables production of native-like lignin from biomass. Green Chemistry, 2021, 23, 5437-5441.	4.6	25
25	Tailoring Distinct Reactive Environments in Lewis Acid Zeolites for Liquid Phase Catalysis. Accounts of Materials Research, 2021, 2, 1033-1046.	5.9	11
26	Data-Driven Design of Biselective Templates for Intergrowth Zeolites. Journal of Physical Chemistry Letters, 2021, 12, 10689-10694.	2.1	12
27	Identification and quantification of distinct active sites in Hf-Beta zeolites for transfer hydrogenation catalysis. Journal of Catalysis, 2021, 404, 607-619.	3.1	21
28	A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chemistry, 2021, 23, 9982-9991.	4.6	27
29	Solvothermal Crystallization Kinetics and Control of Crystal Size Distribution of MOF-808 in a Continuous Flow Reactor. Crystal Growth and Design, 2021, 21, 6529-6536.	1.4	15
30	Isolation of a Side-On V(III)-(η2-O2) through the Intermediacy of a Low-Valent V(II) in a Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 18205-18210.	1.9	4
31	Synthesis of unsupported two-dimensional molybdenum carbide nanosheets for hydrogen evolution. Materials Letters, 2020, 261, 126987.	1.3	22
32	Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells. Nature Materials, 2020, 19, 287-291.	13.3	120
33	A General Technoeconomic Model for Evaluating Emerging Electrolytic Processes. Energy Technology, 2020, 8, 1900994.	1.8	49
34	Conversion of Methane into Liquid Fuelsâ€"Bridging Thermal Catalysis with Electrocatalysis. Advanced Energy Materials, 2020, 10, 2002154.	10.2	57
35	Ordered Hydrogen-Bonded Alcohol Networks Confined in Lewis Acid Zeolites Accelerate Transfer Hydrogenation Turnover Rates. Journal of the American Chemical Society, 2020, 142, 19379-19392.	6.6	60
36	Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds. Chemical Science, 2020, 11, 10225-10235.	3.7	23

#	Article	IF	Citations
37	Enhancement of Alkyne Semi-Hydrogenation Selectivity by Electronic Modification of Platinum. ACS Catalysis, 2020, 10, 6763-6770.	5 . 5	24
38	Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catalysis, 2020, 10, 7820-7825.	5.5	50
39	Gas-Phase Ethylene Polymerization by Single-Site Cr Centers in a Metal–Organic Framework. ACS Catalysis, 2020, 10, 3864-3870.	5.5	17
40	Bismuth Substituted Strontium Cobalt Perovskites for Catalyzing Oxygen Evolution. Journal of Physical Chemistry C, 2020, 124, 6562-6570.	1.5	41
41	Mesoscale Reaction–Diffusion Phenomena Governing Ligninâ€First Biomass Fractionation. ChemSusChem, 2020, 13, 4495-4509.	3.6	35
42	Editors' Choiceâ€"Flooded by Success: On the Role of Electrode Wettability in CO ₂ Electrolyzers that Generate Liquid Products. Journal of the Electrochemical Society, 2020, 167, 124521.	1.3	45
43	Understanding the Impact of Convective Transport on Intercalation Batteries Through Dimensional Analysis. Journal of the Electrochemical Society, 2020, 167, 140551.	1.3	2
44	Kinetic analysis and reaction mechanism for anisole conversion over zirconia-supported molybdenum oxide. Journal of Catalysis, 2019, 376, 248-257.	3.1	38
45	Computational Evidence for Kinetically Controlled Radical Coupling during Lignification. ACS Sustainable Chemistry and Engineering, 2019, 7, 13270-13277.	3.2	21
46	Impact of Transition Metal Carbide and Nitride Supports on the Electronic Structure of Thin Platinum Overlayers. ACS Catalysis, 2019, 9, 7090-7098.	5. 5	30
47	Solid-State Gelation for Nanostructured Perovskite Oxide Aerogels. Chemistry of Materials, 2019, 31, 9422-9429.	3.2	17
48	Lignin-KMC: A Toolkit for Simulating Lignin Biosynthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18313-18322.	3.2	33
49	Ge-Based Hybrid Composites from Ge-Rich Zeolites as Highly Conductive and Stable Electronic Materials. Chemistry of Materials, 2019, 31, 7723-7731.	3.2	3
50	Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery. Accounts of Chemical Research, 2019, 52, 2971-2980.	7.6	94
51	Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Journal of the American Chemical Society, 2019, 141, 11641-11650.	6.6	191
52	Impact of Morphological Effects on the Activity and Stability of Tungsten Carbide Catalysts for Dry Methane Reforming. Energy & Supply 2019, 33, 5544-5550.	2.5	22
53	A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction. ACS Central Science, 2019, 5, 892-899.	5.3	176
54	Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nature Communications, 2019, 10, 2033.	5.8	127

#	Article	IF	CITATIONS
55	Cooperative Co 0 /Co II Sites Stabilized by a Perovskite Matrix Enable Selective Câ^O and Câ^C bond Hydrogenolysis of Oxygenated Arenes. ChemSusChem, 2019, 12, 2171-2175.	3.6	17
56	Principles and Methods for the Rational Design of Core–Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings. Accounts of Chemical Research, 2018, 51, 1054-1062.	7.6	77
57	Distinguishing Active Site Identity in Sn-Beta Zeolites Using ³¹ P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 2018, 8, 3076-3086.	5.5	51
58	Zeolites with isolated-framework and oligomeric-extraframework hafnium species characterized with pair distribution function analysis. Physical Chemistry Chemical Physics, 2018, 20, 7914-7919.	1.3	20
59	Kinetic Studies of Lignin Solvolysis and Reduction by Reductive Catalytic Fractionation Decoupled in Flow-Through Reactors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7951-7959.	3.2	106
60	Concerted Bimetallic Nanocluster Synthesis and Encapsulation via Induced Zeolite Framework Demetallation for Shape and Substrate Selective Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6454-6458.	7.2	78
61	Concerted Bimetallic Nanocluster Synthesis and Encapsulation via Induced Zeolite Framework Demetallation for Shape and Substrate Selective Heterogeneous Catalysis. Angewandte Chemie, 2018, 130, 6564-6568.	1.6	9
62	Highly efficient methane reforming over a lowâ€loading Ru/γâ€Al ₂ O ₃ catalyst in a Pdâ€Ag membrane reactor. AICHE Journal, 2018, 64, 3101-3108.	1.8	15
63	Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule, 2018, 2, 225-244.	11.7	283
64	Electrochemical Oxygen Reduction for the Production of Hydrogen Peroxide. CheM, 2018, 4, 18-19.	5.8	57
65	Selective Catalytic Olefin Epoxidation with Mn ^{II} -Exchanged MOF-5. ACS Catalysis, 2018, 8, 596-601.	5.5	105
66	Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nature Catalysis, 2018, 1, 960-967.	16.1	163
67	Influence of Framework Heteroatoms on Olefin Metathesis Activity Using MoO ₃ -MFI Catalysts. Organic Process Research and Development, 2018, 22, 1683-1686.	1.3	6
68	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4.6	114
69	Activation of Methyltrioxorhenium for Olefin Metathesis in a Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 6956-6960.	6.6	36
70	Reductive Catalytic Fractionation of C-Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 11211-11218.	3.2	89
71	Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catalysis, 2018, 8, 8306-8313.	5.5	133
72	Continuous-Flow Production of Succinic Anhydrides via Catalytic β-Lactone Carbonylation by Co(CO) ₄ âŠ,Cr-MIL-101. Journal of the American Chemical Society, 2018, 140, 10669-10672.	6.6	47

#	Article	IF	CITATIONS
73	Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing. Current Opinion in Chemical Engineering, 2018, 20, 159-167.	3.8	66
74	Importance of Dimer Quantification for Accurate Catalytic Evaluation of Lactic Acid Dehydration to Acrylic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 5843-5851.	1.8	7
75	Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 2017, 19, 3468-3492.	4.6	201
76	Transitionâ€Metal Nitride Core@Nobleâ€Metal Shell Nanoparticles as Highly CO Tolerant Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8828-8833.	7.2	88
77	Transitionâ€Metal Nitride Core@Nobleâ€Metal Shell Nanoparticles as Highly CO Tolerant Catalysts. Angewandte Chemie, 2017, 129, 8954-8959.	1.6	11
78	Heterogeneous Epoxide Carbonylation by Cooperative Ion-Pair Catalysis in Co(CO) ₄ [–] -Incorporated Cr-MIL-101. ACS Central Science, 2017, 3, 444-448.	5.3	51
79	Structural Properties and Reactivity Trends of Molybdenum Oxide Catalysts Supported on Zirconia for the Hydrodeoxygenation of Anisole. ACS Sustainable Chemistry and Engineering, 2017, 5, 5293-5301.	3.2	74
80	Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Ligninâ€Derived Model Phenolics. ChemSusChem, 2017, 10, 2226-2234.	3.6	51
81	Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. Chemistry of Materials, 2017, 29, 3663-3670.	3.2	8
82	Flowthrough Reductive Catalytic Fractionation of Biomass. Joule, 2017, 1, 613-622.	11.7	197
83	Encapsulation of Molybdenum Carbide Nanoclusters inside Zeolite Micropores Enables Synergistic Bifunctional Catalysis for Anisole Hydrodeoxygenation. ACS Catalysis, 2017, 7, 8147-8151.	5.5	56
84	Computational Investigation on Hydrodeoxygenation (HDO) of Acetone to Propylene on α-MoO ₃ (010) Surface. Journal of Physical Chemistry C, 2017, 121, 17848-17855.	1.5	29
85	Electrocatalytic Hydrogenation of Oxygenates using Earthâ€Abundant Transitionâ€Metal Nanoparticles under Mild Conditions. ChemSusChem, 2016, 9, 1904-1910.	3.6	44
86	Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science, 2016, 352, 974-978.	6.0	495
87	Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 663-692.	3.3	137
88	Reductive Catalytic Fractionation of Corn Stover Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 6940-6950.	3.2	235
89	Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy and Environmental Science, 2016, 9, 3290-3301.	15.6	138
90	Production of Hydroxyl-rich Acids from Xylose and Glucose Using Sn-BEA Zeolite. ChemistrySelect, 2016, 1, 4167-4172.	0.7	27

#	Article	IF	Citations
91	Interrogating the Lewis Acidity of Metal Sites in Beta Zeolites with ¹⁵ N Pyridine Adsorption Coupled with MAS NMR Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 28533-28544.	1.5	91
92	Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. Green Chemistry, 2016, 18, 5548-5557.	4.6	76
93	Realistic Surface Descriptions of Heterometallic Interfaces: The Case of TiWC Coated in Noble Metals. Journal of Physical Chemistry Letters, 2016, 7, 4475-4482.	2.1	24
94	Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Central Science, 2016, 2, 424-429.	5.3	353
95	Solar molten salt heated membrane reformer for natural gas upgrading and hydrogen generation: A CFD model. Solar Energy, 2016, 124, 163-176.	2.9	41
96	Synthesis of Itaconic Acid Ester Analogues via Self-Aldol Condensation of Ethyl Pyruvate Catalyzed by Hafnium BEA Zeolites. ACS Catalysis, 2016, 6, 2739-2744.	5.5	54
97	Reverse Microemulsion-mediated Synthesis of Monometallic and Bimetallic Early Transition Metal Carbide and Nitride Nanoparticles. Journal of Visualized Experiments, 2015, , .	0.2	3
98	Metalloenzymeâ€Like Zeolites as Lewis Acid Catalysts for CC Bond Formation. Angewandte Chemie - International Edition, 2015, 54, 12554-12561.	7.2	75
99	Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie - International Edition, 2015, 54, 9835-9838.	7.2	148
100	Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production. Environmental Science & Environmental Science & 2015, 49, 8183-8192.	4.6	14
101	Alloying Tungsten Carbide Nanoparticles with Tantalum: Impact on Electrochemical Oxidation Resistance and Hydrogen Evolution Activity. Journal of Physical Chemistry C, 2015, 119, 13691-13699.	1.5	38
102	Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catalysis, 2015, 5, 972-977.	5.5	116
103	Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor. International Journal of Hydrogen Energy, 2015, 40, 3158-3169.	3.8	47
104	Methane to Acetic Acid over Cu-Exchanged Zeolites: Mechanistic Insights from a Site-Specific Carbonylation Reaction. Journal of the American Chemical Society, 2015, 137, 1825-1832.	6.6	149
105	Solar thermal catalytic reforming of natural gas: a review on chemistry, catalysis and system design. Catalysis Science and Technology, 2015, 5, 1991-2016.	2.1	78
106	Ultra-low loading Ru \hat{I}^3 -Al 2 O 3 : A highly active and stable catalyst for low temperature solar thermal reforming of methane. Applied Catalysis B: Environmental, 2015, 168-169, 540-549.	10.8	30
107	Acidâ€catalyzed Oxidation of Levulinate Derivatives to Succinates under Mild Conditions. ChemCatChem, 2015, 7, 916-920.	1.8	20
108	Toward rational design of stable, supported metal catalysts for aqueous-phase processing: Insights from the hydrogenation of levulinic acid. Journal of Catalysis, 2015, 329, 10-21.	3.1	65

#	Article	IF	CITATIONS
109	Al-MFI Nanosheets as Highly Active and Stable Catalysts for the Conversion of Propanal to Hydrocarbons. Topics in Catalysis, 2015, 58, 529-536.	1.3	5
110	One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 2015, 6, 6320-6324.	3.7	118
111	Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol. Journal of Catalysis, 2015, 331, 86-97.	3.1	205
112	SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control. Journal of the American Chemical Society, 2015, 137, 13007-13017.	6.6	191
113	Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chemistry, 2014, 16, 719-726.	4.6	92
114	Engineering Nonâ€sintered, Metalâ€Terminated Tungsten Carbide Nanoparticles for Catalysis. Angewandte Chemie - International Edition, 2014, 53, 5131-5136.	7.2	203
115	Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. Journal of Catalysis, 2014, 320, 198-207.	3.1	165
116	Cascade Reactions for the Continuous and Selective Production of Isobutene from Bioderived Acetic Acid Over Zinc-Zirconia Catalysts. ACS Catalysis, 2014, 4, 4196-4200.	5.5	53
117	A Continuous Flow Strategy for the Coupled Transfer Hydrogenation and Etherification of 5â€(Hydroxymethyl)furfural using Lewis Acid Zeolites. ChemSusChem, 2014, 7, 2255-2265.	3.6	177
118	Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance ¹¹⁹ Sn Precursors. Journal of the American Chemical Society, 2014, 136, 6219-6222.	6.6	139
119	Sustainable catalytic conversions of renewable substrates. Catalysis Science and Technology, 2014, 4, 2180.	2.1	15
120	Insights into the catalytic activity and surface modification of MoO ₃ during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy and Environmental Science, 2014, 7, 2660-2669.	15.6	356
121	Catalytic consequences of borate complexation and pH on the epimerization of l-arabinose to l-ribose in water catalyzed by Sn-Beta zeolite with borate salts. Journal of Molecular Catalysis A, 2013, 379, 294-302.	4.8	31
122	Emerging catalytic processes for the production of adipic acid. Catalysis Science and Technology, 2013, 3, 1465-1479.	2.1	266
123	Role of Acid Catalysis in the Conversion of Lignocellulosic Biomass to Fuels and Chemicals. , 2013, , 261-288.		9
124	Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γâ€Valerolactone from Furfural. Angewandte Chemie - International Edition, 2013, 52, 8022-8025.	7.2	366
125	Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy and Environmental Science, 2013, 6, 1732.	15.6	289
126	Innentitelbild: Domino Reaction Catalyzed by Zeolites with Br \tilde{A} , nsted and Lewis Acid Sites for the Production of \hat{I}^3 -Valerolactone from Furfural (Angew. Chem. 31/2013). Angewandte Chemie, 2013, 125, 8044-8044.	1.6	0

#	Article	IF	Citations
127	Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 2012, 3, 1109.	5.8	155
128	Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9727-9732.	3.3	354
129	Synthesis and Catalytic Activity of Sn-MFI Nanosheets for the Baeyer–Villiger Oxidation of Cyclic Ketones. ACS Catalysis, 2012, 2, 2695-2699.	5.5	143
130	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	5.5	38
131	Rhodium(0) Nanoparticles Supported on Nanocrystalline Hydroxyapatite: Highly Effective Catalytic System for the Solvent-Free Hydrogenation of Aromatics at Room Temperature. Langmuir, 2012, 28, 60-64.	1.6	66
132	Investigating the technoâ€economic tradeâ€offs of hydrogen source using a response surface model of dropâ€in biofuel production via bioâ€oil upgrading. Biofuels, Bioproducts and Biorefining, 2012, 6, 503-520.	1.9	28
133	Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. Journal of Physical Chemistry C, 2011, 115, 1096-1102.	1.5	114
134	"One-Pot―Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 2011, 1, 408-410.	5.5	607
135	Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 2011, 1, 1566-1580.	5.5	349
136	Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie - International Edition, 2010, 49, 8954-8957.	7.2	612
137	Hybrid Organicâ^'Inorganic Solids That Show Shape Selectivity. Chemistry of Materials, 2010, 22, 2646-2652.	3.2	12
138	Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6164-6168.	3.3	861
139	Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts. Topics in Catalysis, 2009, 52, 297-303.	1.3	407
140	Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 2007, 9, 342-350.	4.6	1,060
141	Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 2007, 447, 982-985.	13.7	2,011
142	Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 2006, 312, 1933-1937.	6.0	1,466
143	Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structureâ€Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx. Angewandte Chemie, 0, , .	1.6	1