

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2406597/publications.pdf Version: 2024-02-01

VINCLI

#	Article	IF	CITATIONS
1	Impacts of additional HONO sources on O ₃ and PM _{2.5} chemical coupling and control strategies in the Beijing–Tianjin–Hebei region of China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 23930.	1.6	17
2	Secondary organic aerosol formation from gasoline and diesel vehicle exhaust under light and dark conditions. Environmental Science Atmospheres, 2022, 2, 46-64.	2.4	5
3	Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. Environmental Sciences: Processes and Impacts, 2021, 23, 559-568.	3.5	12
4	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	4.9	22
5	Estimation of secondary organic aerosol viscosity from explicit modeling of gas-phase oxidation of isoprene and <i>α</i> -pinene. Atmospheric Chemistry and Physics, 2021, 21, 10199-10213.	4.9	10
6	Diurnal and Seasonal Variations in the Phase State of Secondary Organic Aerosol Material over the Contiguous US Simulated in CMAQ. ACS Earth and Space Chemistry, 2021, 5, 1971-1982.	2.7	12
7	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. Atmospheric Chemistry and Physics, 2021, 21, 11453-11465.	4.9	14
8	Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity. Atmospheric Chemistry and Physics, 2021, 21, 1127-1141.	4.9	12
9	Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of β-Caryophyllene: Measurements, Predictions, and Implications. ACS Earth and Space Chemistry, 2021, 5, 305-318.	2.7	32
10	Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA. Environmental Science Atmospheres, 2021, 1, 140-153.	2.4	14
11	Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements. ACS Earth and Space Chemistry, 2021, 5, 3458-3473.	2.7	14
12	Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols. Atmospheric Environment, 2020, 222, 117111.	4.1	17
13	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	3.5	20
14	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	3.3	30
15	Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmospheric Chemistry and Physics, 2020, 20, 8103-8122.	4.9	47
16	Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. Atmospheric Chemistry and Physics, 2019, 19, 10073-10085.	4.9	35
17	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	4.9	45
18	Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmospheric Chemistry and Physics, 2019, 19, 5959-5971.	4.9	53

Ying Li

#	Article	IF	CITATIONS
19	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	4.9	27
20	Molecular Corridors, Volatility and Particle Phase State in Secondary Organic Aerosols. ACS Symposium Series, 2018, , 209-244.	0.5	2
21	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	4.9	116
22	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. Journal of Physical Chemistry A, 2017, 121, 1298-1309.	2.5	51
23	Global distribution of particle phase state in atmospheric secondary organic aerosols. Nature Communications, 2017, 8, 15002.	12.8	295
24	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	8.0	28
25	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, 11815-11824.	10.0	237
26	Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmospheric Chemistry and Physics, 2016, 16, 3327-3344.	4.9	170
27	Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer. Atmospheric Environment, 2016, 124, 176-185.	4.1	37
28	Impacts of Additional HONO Sources on Concentrations and Deposition of NO _y in the Beijing-Tianjin-Hebei Region of China. Scientific Online Letters on the Atmosphere, 2015, 11, 36-42.	1.4	6
29	Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China. Atmospheric Chemistry and Physics, 2015, 15, 9381-9398.	4.9	46
30	A review on ice fog measurements and modeling. Atmospheric Research, 2015, 151, 2-19.	4.1	68
31	Impacts of uncertainty in AVOC emissions on the summer ROx budget and ozone production rate in the three most rapidly-developing economic growth regions of China. Advances in Atmospheric Sciences, 2014, 31, 1331-1342.	4.3	21
32	Effects of additional HONO sources on visibility over the North China Plain. Advances in Atmospheric Sciences, 2014, 31, 1221-1232.	4.3	13
33	Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region. Advances in Atmospheric Sciences, 2014, 31, 787-800.	4.3	30
34	Uncertainty in the uptake coefficient for HONO formation on soot and its impacts on concentrations of major chemical components in the Beijing–Tianjin–Hebei region. Atmospheric Environment, 2014, 84, 163-171.	4.1	15
35	Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6 diffusion and pool fire experiments. Atmospheric Environment, 2013, 81, 60-67.	4.1	5
36	Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze. Advances in Atmospheric Sciences, 2013, 30, 57-66.	4.3	57

Ying Li

#	Article	IF	CITATIONS
37	Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmospheric Environment, 2011, 45, 4735-4744.	4.1	63
38	Midlatitude cirrus cloud radiative forcing over China. Journal of Geophysical Research, 2010, 115, .	3.3	25
39	Impacts of Photoexcited NO2 Chemistry and Heterogeneous Reactions on Concentrations of O3 and NOy in Beijing,Tianjin and Hebei Province of China. , 0, , .		5