Yuriko Osakabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240563/publications.pdf

Version: 2024-02-01

73 papers

11,134 citations

45 h-index

53794

70 g-index

81 all docs

81 docs citations

times ranked

81

11862 citing authors

#	Article	IF	CITATIONS
1	Response of plants to water stress. Frontiers in Plant Science, 2014, 5, 86.	3.6	1,091
2	Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell, 2006, 18, 1292-1309.	6.6	968
3	Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18822-18827.	7.1	694
4	Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 851-856.	7.1	555
5	Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal, 2007, 50, 54-69.	5.7	447
6	A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556, 235-238.	27.8	396
7	Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011, 286, 321-332.	2.1	377
8	Osmotic Stress Responses and Plant Growth Controlled by Potassium Transporters in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 25, 609-624.	6.6	350
9	Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany, 2013, 64, 445-458.	4.8	325
10	ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 2014, 202, 35-49.	7.3	321
11	Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis. Plant Cell, 2005, 17, 1105-1119.	6.6	313
12	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> Development (Cambridge), 2010, 137, 3911-3920.	2.5	291
13	Site-directed mutagenesis in <i>Arabidopsis</i> using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12034-12039.	7.1	282
14	Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports, 2016, 6, 26685.	3.3	270
15	Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 2016, 6, 31481.	3.3	270
16	Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2006, 49, 46-63.	5.7	256
17	Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports, 2017, 7, 507.	3.3	208
18	Genome Editing with Engineered Nucleases in Plants. Plant and Cell Physiology, 2015, 56, 389-400.	3.1	204

#	Article	IF	CITATIONS
19	The Phytochrome-Interacting Factor PIF7 Negatively Regulates <i>DREB1 </i> Expression under Circadian Control in Arabidopsis. Plant Physiology, 2009, 151, 2046-2057.	4.8	181
20	Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal, 2007, 50, 751-766.	5.7	171
21	Abiotic stressâ€inducible receptorâ€like kinases negatively control ABA signaling in Arabidopsis. Plant Journal, 2012, 70, 599-613.	5.7	168
22	Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 2020, 20, 234.	3.6	152
23	Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides. Journal of Biological Chemistry, 2010, 285, 1138-1146.	3.4	151
24	Generation of \hat{l}_{\pm} -solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry, 2018, 131, 70-77.	5.8	150
25	GmDREB2A;2, a Canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-Type Transcription Factor in Soybean, Is Posttranslationally Regulated and Mediates Dehydration-Responsive Element-Dependent Gene Expression Â. Plant Physiology, 2012, 161, 346-361.	4.8	149
26	<i>Arabidopsis</i> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.	6.6	143
27	CRISPR–Cas9-mediated genome editing in apple and grapevine. Nature Protocols, 2018, 13, 2844-2863.	12.0	142
28	The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 2017, 13, e1007076.	3.5	140
29	An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 2019, 5, 363-368.	9.3	135
30	Overproduction of the Membrane-bound Receptor-like Protein Kinase 1, RPK1, Enhances Abiotic Stress Tolerance in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 9190-9201.	3.4	133
31	Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances, 2019, 5, eaax9067.	10.3	122
32	Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15947-15952.	7.1	119
33	Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription. DNA Research, 2013, 20, 315-324.	3.4	93
34	Monosaccharide Absorption Activity of Arabidopsis Roots Depends on Expression Profiles of Transporter Genes under High Salinity Conditions. Journal of Biological Chemistry, 2011, 286, 43577-43586.	3.4	88
35	Isolation and characterization of theRAD54gene fromArabidopsis thaliana. Plant Journal, 2006, 48, 827-842.	5.7	84
36	Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochemical and Biophysical Research Communications, 2002, 293, 806-815.	2.1	81

#	Article	IF	CITATIONS
37	Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Scientific Reports, 2017, 7, 1260.	3.3	79
38	Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Molecular Biology, 1999, 40, 555-565.	3.9	72
39	Efficient Multiplex Genome Editing Induces Precise, and Self-Ligated Type Mutations in Tomato Plants. Frontiers in Plant Science, 2018, 9, 916.	3.6	65
40	MYB transcription factor gene involved in sex determination in <i>Asparagus officinalis</i> Cells, 2017, 22, 115-123.	1.2	59
41	Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVEÂ2 in drought adaptation of <i>Arabidopsis thaliana</i> Plant Journal, 2020, 103, 111-127.	5.7	58
42	Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 2011, 142, 105-117.	5.2	57
43	Os <scp>MYB</scp> 108 lossâ€ofâ€function enriches <i>p</i> â€coumaroylated and tricin lignin units in rice cell walls. Plant Journal, 2019, 98, 975-987.	5.7	57
44	Genome editing in plants using CRISPR type I-D nuclease. Communications Biology, 2020, 3, 648.	4.4	53
45	Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 2013, 8, e80457.	2.5	52
46	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	5.7	40
47	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	4.8	39
48	Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System. Plant and Cell Physiology, 2016, 57, 2600-2610.	3.1	35
49	Responses to environmental stresses in woody plants: key to survive and longevity. Journal of Plant Research, 2012, 125, 1-10.	2.4	34
50	Genome Editing to Improve Abiotic Stress Responses in Plants. Progress in Molecular Biology and Translational Science, 2017, 149, 99-109.	1.7	32
51	Immunocytochemical localization of phenylalanine ammonia-lyase in tissues of Populus kitakamiensis. Planta, 1996, 200, 13-9.	3.2	31
52	Structure and tissue-specific expression of genes for phenylalanine ammonia-lyase from a hybrid aspen, Populus kitakamiensis. Plant Science, 1995, 105, 217-226.	3.6	29
53	Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Research, 2021, 49, 6347-6363.	14.5	29
54	Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell and Developmental Biology, 2018, 83, 106-114.	5.0	28

#	Article	IF	Citations
55	Characterization of the structure and determination of mRNA levels of the phenylalanine ammonia-lyase gene family from Populus kitakamiensis. Plant Molecular Biology, 1995, 28, 1133-1141.	3.9	25
56	A Mutated Cytosine Deaminase Gene, codA (D314A), as an Efficient Negative Selection Marker for Gene Targeting in Rice. Plant and Cell Physiology, 2014, 55, 658-665.	3.1	22
57	Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes. Plant Biotechnology, 2019, 36, 253-263.	1.0	22
58	Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta. Plant and Cell Physiology, 2019, 60, 2496-2509.	3.1	21
59	Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. Plant Science, 2020, 296, 110466.	3.6	21
60	Targeted mutagenesis of <i>CENTRORADIALIS</i> using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. Journal of Horticultural Science and Biotechnology, 2021, 96, 153-161.	1.9	21
61	Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum. Plant Cell Reports, 2009, 28, 1309-1317.	5.6	19
62	Genome engineering of woody plants: past, present and future. Journal of Wood Science, 2016, 62, 217-225.	1.9	19
63	Isolation of 4-coumarate Co-A ligase gene promoter from loblolly pine (Pinus taeda) and characterization of tissue-specific activity in transgenic tobacco. Plant Physiology and Biochemistry, 2009, 47, 1031-1036.	5.8	15
64	A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS ONE, 2017, 12, e0186326.	2.5	14
65	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> Development (Cambridge), 2010, 137, 4327-4327.	2.5	12
66	Effects of the sliaa9 Mutation on Shoot Elongation Growth of Tomato Cultivars. Frontiers in Plant Science, 2021, 12, 627832.	3.6	11
67	Overexpression of a fungal laccase gene induces nondehiscent anthers and morphological changes in flowers of transgenic tobacco. Journal of Wood Science, 2010, 56, 460-469.	1.9	6
68	Immunological detection and cellular localization of the phenylalanine ammonia-lyase of a hybrid aspen. Plant Biotechnology, 2006, 23, 399-404.	1.0	4
69	Crop Breeding Using CRISPR/Cas9., 2018,, 451-464.		3
70	Genome Editing in Higher Plants. , 2015, , 197-205.		2
71	Genome Editing in Apple. Compendium of Plant Genomes, 2021, , 213-225.	0.5	2
72	Environmental sensing and plant development. Seminars in Cell and Developmental Biology, 2018, 83, 67-68.	5.0	0

#	Article	IF	CITATIONS
73	Measurement of Potassium Content in Arabidopsis. Bio-protocol, 2013, 3, .	0.4	0