Tom Regier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2405155/publications.pdf

Version: 2024-02-01

42 papers 14,205 citations

218677 26 h-index 276875 41 g-index

42 all docs

42 docs citations

42 times ranked 17884 citing authors

#	Article	IF	Citations
1	Positronâ€emitting radiotracers spatially resolve unexpected biogeochemical relationships linked with methane oxidation in Arctic soils. Global Change Biology, 2022, , .	9.5	O
2	Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy, 2021, 79, 105409.	16.0	74
3	Chemistry and Associations of Carbon in Water-Stable Soil Aggregates from a Long-Term Temperate Agroecosystem and Implications on Soil Carbon Stabilization. ACS Agricultural Science and Technology, 2021, 1, 294-302.	2.3	1
4	Direct Observation of Optical Band Gap Components in Ga1–xZnxN1–xOx Solid-Solution Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19438-19444.	3.1	1
5	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	34.4	390
6	High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes. Sustainable Energy and Fuels, 2020, 4, 4076-4085.	4.9	14
7	Soil organic matter characteristics in drained and rewetted peatlands of northern Germany: Chemical and spectroscopic analyses. Geoderma, 2019, 353, 468-481.	5.1	19
8	Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction. Nano Energy, 2019, 62, 700-708.	16.0	37
9	Aircraft and MiniCAST soot at the nanoscale. Combustion and Flame, 2019, 204, 278-289.	5.2	28
10	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 2018, 1, 103-110.	34.4	737
11	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nature Chemistry, 2018, 10, 149-154.	13.6	476
12	Manganese-Driven Carbon Oxidation at Oxic–Anoxic Interfaces. Environmental Science & Emp; Technology, 2018, 52, 12349-12357.	10.0	54
13	Golden single-atomic-site platinum electrocatalysts. Nature Materials, 2018, 17, 1033-1039.	27.5	266
14	Revealing the charge/discharge mechanism of Na–O ₂ cells by ⟨i⟩in situ⟨/i⟩ soft X-ray absorption spectroscopy. Energy and Environmental Science, 2018, 11, 2073-2077.	30.8	37
15	Soil organic matter characteristics as indicator of Chernozem genesis in the Baltic Sea region. Geoderma Regional, 2016, 7, 187-200.	2.1	20
16	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
17	The structure of haplobasaltic glasses investigated using X-ray absorption near edge structure (XANES) spectroscopy at the Si, Al, Mg, and O K -edges and Ca, Si, and Al L 2,3 -edges. Chemical Geology, 2016, 420, 213-230.	3.3	18
18	Bulk sensitive determination of the Fe ³⁺ /Fe _{Tot} -ratio in minerals by Fe L _{2/3} -edge X-ray Raman scattering. Journal of Analytical Atomic Spectrometry, 2016, 31, 815-820.	3.0	9

#	Article	IF	CITATIONS
19	Advances in Using Soft X-Ray Spectroscopy for Measurement of Soil Biogeochemical Processes. Advances in Agronomy, 2015, , 1-32.	5.2	30
20	Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Environmental Science and Pollution Research, 2014, 21, 2943-2954.	5.3	44
21	Observation of the origin of d ⁰ magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. Nanoscale, 2014, 6, 9166.	5.6	57
22	Probing the Structure of NaYF ₄ Nanocrystals using Synchrotron-Based Energy-Dependent X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 21639-21646.	3.1	15
23	Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014, 16, 15787.	2.8	84
24	Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy and Environmental Science, 2013, 6, 926.	30.8	177
25	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	13.7	2,498
26	Spectroscopic understanding of ultra-high rate performance for LiMn0.75Fe0.25PO4 nanorods–graphene hybrid in lithium ion battery. Physical Chemistry Chemical Physics, 2012, 14, 9578.	2.8	48
27	Direct Observation of Tetrahedrally Coordinated Fe(III) in Ferrihydrite. Environmental Science & Samp; Technology, 2012, 46, 3163-3168.	10.0	84
28	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	10.4	104
29	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	13.7	1,266
30	Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS. Thermochimica Acta, 2012, 537, 36-43.	2.7	30
31	The unexpected structures of "core–shell―and "alloy―LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy. Nanoscale, 2011, 3, 3376.	5.6	26
32	Nonstatistical Dopant Distribution of Ln ³⁺ -Doped NaGdF ₄ Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 15950-15958.	3.1	57
33	Soft X-ray Induced Photoreduction of Organic Cu(II) Compounds Probed by X-ray Absorption Near-Edge (XANES) Spectroscopy. Analytical Chemistry, 2011, 83, 7856-7862.	6.5	38
34	Further Understanding of the Electronic Interactions between N719 Sensitizer and Anatase TiO ₂ Films: A Combined X-ray Absorption and X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2011, 115, 5692-5707.	3.1	72
35	Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10, 780-786.	27.5	5,120
36	TG–FTIR, LC/MS, XANES and Py-FIMS to disclose the thermal decomposition pathways and aromatic N formation during dipeptide pyrolysis in a soil matrix. Journal of Analytical and Applied Pyrolysis, 2011, 90, 164-173.	5.5	23

Tom Regier

#	Article	IF	CITATION
37	The Origin and Dynamics of Soft Xâ€Rayâ€Excited Optical Luminescence of ZnO. ChemPhysChem, 2010, 11, 3625-3631.	2.1	34
38	Cultivation Affects Soil Organic Nitrogen: Pyrolysisâ€Mass Spectrometry and Nitrogen Kâ€edge XANES Spectroscopy Evidence. Soil Science Society of America Journal, 2009, 73, 82-92.	2.2	27
39	Zinc Porphyrinâ€Driven Assembly of Gold Nanofingers. Small, 2008, 4, 497-506.	10.0	8
40	X-ray Excited Optical Luminescence from Diamond Thin Films:Â The Contribution of sp2- and H-Bonded Carbon to the Luminescence. Journal of the American Chemical Society, 2007, 129, 1476-1477.	13.7	14
41	Nitrogen <i>K</i> -edge XANES â€" an overview of reference compounds used to identify `unknown' organic nitrogen in environmental samples. Journal of Synchrotron Radiation, 2007, 14, 500-511.	2.4	194
42	Time-Resolved X-ray Excited Optical Luminescence from Tris(2-phenyl bipyridine)iridium. Journal of the American Chemical Society, 2006, 128, 3906-3907.	13.7	26