List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	13.7	1,556
2	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
3	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	13.6	571
4	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	13.7	479
5	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	13.8	455
6	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	16.0	421
7	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	12.8	326
8	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	13.7	310
9	Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 2019, 9, 1901213.	19.5	275
10	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nature Catalysis, 2018, 1, 704-710.	34.4	273
11	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	13.8	263
12	Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nature Communications, 2019, 10, 677.	12.8	258
13	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	12.8	253
14	Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 2020, 11, 48.	12.8	223
15	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
16	Understanding the Nature of the Kinetic Process in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2</mml:mn></mml:msub>Metal-Ir Transition. Physical Review Letters, 2010, 105, 226405.</mml:math 	ısulator	171
17	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie - International Edition, 2020, 59, 16459-16464.	13.8	148
18	Atomic Indium Catalysts for Switching CO ₂ Electroreduction Products from Formate to CO. Journal of the American Chemical Society, 2021, 143, 6877-6885.	13.7	140

#	Article	IF	CITATIONS
19	MOFâ€Confined Subâ€2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as Highâ€Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials, 2018, 30, e1801878.	21.0	133
20	Electrostatic Attraction-Driven Assembly of a Metal–Organic Framework with a Photosensitizer Boosts Photocatalytic CO ₂ Reduction to CO. Journal of the American Chemical Society, 2021, 143, 17424-17430.	13.7	127
21	Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Applied Catalysis B: Environmental, 2019, 259, 118039.	20.2	124
22	Fe ₁ N ₄ –O ₁ site with axial Fe–O coordination for highly selective CO ₂ reduction over a wide potential range. Energy and Environmental Science, 2021, 14, 3430-3437.	30.8	119
23	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	10.4	118
24	Clarifying the controversial catalytic active sites of Co ₃ O ₄ for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 23191-23198.	10.3	115
25	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	16.0	114
26	Synergistic Pd Single Atoms, Clusters, and Oxygen Vacancies on TiO ₂ for Photocatalytic Hydrogen Evolution Coupled with Selective Organic Oxidation. Small, 2021, 17, e2006255.	10.0	110
27	Engineering Catalytic Interfaces in Cu ^{δ+} /CeO ₂ -TiO ₂ Photocatalysts for Synergistically Boosting CO ₂ Reduction to Ethylene. ACS Nano, 2022, 16, 2306-2318.	14.6	107
28	Enhanced visible-light-driven photocatalysis from WS ₂ quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catalysis Science and Technology, 2018, 8, 201-209.	4.1	95
29	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	21.0	93
30	Aqueous CO ₂ Reduction with High Efficiency Using αâ€Co(OH) ₂ ‣upported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	13.8	90
31	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	13.8	90
32	Efficient electroreduction of CO ₂ to C ₂₊ products on CeO ₂ modified CuO. Chemical Science, 2021, 12, 6638-6645.	7.4	89
33	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie - International Edition, 2021, 60, 20803-20810.	13.8	86
34	Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919-1929.	6.3	75
35	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & amp; Interfaces, 2019, 11, 33819-33824.	8.0	74
36	Probing Nucleation Pathways for Morphological Manipulation of Platinum Nanocrystals. Journal of the American Chemical Society, 2012, 134, 9410-9416.	13.7	71

#	Article	IF	CITATIONS
37	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	8.0	71
38	Hexane-Driven Icosahedral to Cuboctahedral Structure Transformation of Gold Nanoclusters. Journal of the American Chemical Society, 2012, 134, 17997-18003.	13.7	70
39	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
40	Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. Journal of the American Chemical Society, 2022, 144, 4942-4951.	13.7	67
41	Design of Binary Cu–Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO ₂ Electroreduction. Small, 2021, 17, e2006951.	10.0	63
42	Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 296, 120336.	20.2	58
43	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	2.0	51
44	Elucidating the Nature of the Cu(I) Active Site in CuO/TiO ₂ for Excellent Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 7091-7101.	8.0	51
45	Unidirectional Thermal Diffusion in Bimetallic Cu@Au Nanoparticles. ACS Nano, 2014, 8, 1886-1892.	14.6	48
46	Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Storage Materials, 2020, 24, 402-411.	18.0	48
47	Fe Single Atoms and Fe ₂ O ₃ Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions. ACS Applied Materials & Interfaces, 2020, 12, 34122-34129.	8.0	47
48	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	2.0	45
49	Atomically Dispersed Pt/Metal Oxide Mesoporous Catalysts from Synchronous Pyrolysis–Deposition Route for Water–Gas Shift Reaction. Chemistry of Materials, 2018, 30, 5534-5538.	6.7	44
50	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multiâ€Carbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
51	Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.	3.7	42
52	Fe/Fe ₂ O ₃ @Nâ€dopped Porous Carbon: A Highâ€Performance Catalyst for Selective Hydrogenation of Nitro Compounds. ChemCatChem, 2019, 11, 724-728.	3.7	41
53	Design of assembled composite of Mn3O4@Graphitic carbon porous nano-dandelions: A catalyst for Low–temperature selective catalytic reduction of NOx with remarkable SO2 resistance. Applied Catalysis B: Environmental, 2020, 269, 118731.	20.2	41
54	In-Situ doping-induced crystal form transition of amorphous Pd–P catalyst for robust electrocatalytic hydrodechlorination. Applied Catalysis B: Environmental, 2021, 284, 119713.	20.2	41

#	Article	IF	CITATIONS
55	Fe/Fe ₃ C Encapsulated in N-Doped Carbon Tubes: A Recyclable Catalyst for Hydrogenation with High Selectivity. Inorganic Chemistry, 2019, 58, 9469-9475.	4.0	40
56	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	7.4	40
57	Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc–air batteries. Journal of Energy Chemistry, 2021, 53, 364-371.	12.9	36
58	Synergetic Function of the Single-Atom Ru–N ₄ Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 15250-15258.	8.0	35
59	Regulation of oxygen reduction reaction by the magnetic effect of L10-PtFe alloy. Applied Catalysis B: Environmental, 2020, 278, 119332.	20.2	34
60	Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. Journal of Colloid and Interface Science, 2021, 604, 650-659.	9.4	32
61	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	7.4	31
62	Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 16210-16217.	8.0	31
63	Monolayered Ru1/TiO2 nanosheet enables efficient visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2020, 271, 118925.	20.2	30
64	Effect of the coordination environment of Cu in Cu ₂ 0 on the electroreduction of CO ₂ to ethylene. Green Chemistry, 2020, 22, 6340-6344.	9.0	28
65	Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Science China Materials, 2021, 64, 2729-2738.	6.3	28
66	Atomically Dispersed CoN ₃ C ₁ â€TeN ₁ C ₃ Diatomic Sites Anchored in Nâ€Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction. Small, 2022, 18, .	10.0	28
67	Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Research, 2020, 13, 3068-3074.	10.4	27
68	Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Research, 2021, 14, 4841-4847.	10.4	26
69	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie, 2020, 132, 16601-16606.	2.0	23
70	Aerobic selective oxidation of methylaromatics to benzoic acids over Co@N/Co-CNTs with high loading CoN ₄ species. Journal of Materials Chemistry A, 2019, 7, 27212-27216.	10.3	22
71	A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis. Journal of Materials Chemistry A, 2020, 8, 25768-25779.	10.3	22
72	Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range. Journal of Energy Chemistry, 2022, 67, 147-156.	12.9	22

#	Article	IF	CITATIONS
73	Atomically-dispersed NiN ₄ –Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 6007-6015.	10.3	22
74	Enhancing CO ₂ electroreduction to CH ₄ over Cu nanoparticles supported on N-doped carbon. Chemical Science, 2022, 13, 8388-8394.	7.4	21
75	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ â€&upported Atomic Ir Electrocatalysts. Angewandte Chemie, 2019, 131, 4717-4721.	2.0	20
76	Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Research, 2022, 15, 1993-2002.	10.4	20
77	Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Research, 2022, 15, 3980-3990.	10.4	20
78	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	10.4	18
79	Dual active sites of the Co ₂ N and single-atom Co–N ₄ embedded in nitrogen-rich nanocarbons: a robust electrocatalyst for oxygen reduction reactions. Nanotechnology, 2020, 31, 165401.	2.6	16
80	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie, 2021, 133, 20971-20978.	2.0	16
81	Ni@PC as a stabilized catalyst toward the efficient hydrogenation of quinoline at ambient temperature. Catalysis Science and Technology, 2019, 9, 6669-6672.	4.1	15
82	Highly efficient oxygen evolution catalysis achieved by NiFe oxyhydroxide clusters anchored on carbon black. Journal of Materials Chemistry A, 2022, 10, 10342-10349.	10.3	13
83	Partial-surface-passivation strategy for transition-metal-based copper–gold nanocage. Chemical Communications, 2016, 52, 6617-6620.	4.1	12
84	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	2.0	11
85	Boosting the Activity of Single-Atom Pt ₁ /CeO ₂ via Co Doping for Low-Temperature Catalytic Oxidation of CO. Inorganic Chemistry, 2022, 61, 11932-11938.	4.0	11
86	Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO ₂ reduction with high efficiency. Chemical Science, 2021, 12, 11914-11920.	7.4	10
87	High Activity and Stability of PdO <i>_x</i> Anchored in Porous NiO Nanofibers for Catalyzing Suzuki Coupling Reactions. Journal of Physical Chemistry C, 2020, 124, 22539-22549.	3.1	10
88	Amino induced high-loading atomically dispersed Co sites on N-doped hollow carbon for efficient CO ₂ transformation. Chemical Communications, 2022, 58, 6602-6605.	4.1	10
89	Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction. Chinese Journal of Catalysis, 2022, 43, 1697-1702.	14.0	10
90	Biomembrane derived porous carbon film supported Au nanoparticles for highly reproducible surface-enhanced Raman scattering. New Journal of Chemistry, 2013, 37, 3131.	2.8	5

#	Article	IF	CITATIONS
91	Water Splitting Catalysts: Colloidal Synthesis of Mo-Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting (Adv. Mater. Interfaces 13/2018). Advanced Materials Interfaces, 2018, 5, 1870063.	3.7	4
92	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multi arbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie, 0, , .	2.0	0