List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404367/publications.pdf Version: 2024-02-01

	4136	7511
26,026	87	151
citations	h-index	g-index
253	253	29739
docs citations	times ranked	citing authors
	26,026 citations 253 docs citations	26,026 87 citations h-index 253 253 docs citations 253 times ranked

#	Article	IF	CITATIONS
1	ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skinâ€draining lymph nodes. Immunology and Cell Biology, 2022, , .	1.0	3
2	CXCL11 expressing C57BL/6 mice have intact adaptive immune responses to viral infection. Immunology and Cell Biology, 2022, , .	1.0	4
3	Bhlhe40: Gatekeeper of the GC. Journal of Experimental Medicine, 2022, 219, .	4.2	0
4	ILC2â€derived ILâ€13 promotes skin cDC2 diversity. Immunology and Cell Biology, 2022, 100, 141-143.	1.0	0
5	Therapeutic inhibition of the SRC-kinase HCK facilitates T cell tumor infiltration and improves response to immunotherapy. Science Advances, 2022, 8, .	4.7	16
6	Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death and Differentiation, 2022, 29, 2519-2530.	5.0	5
7	The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia, 2021, 35, 2114-2118.	3.3	18
8	Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nature Immunology, 2021, 22, 216-228.	7.0	116
9	Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development. Nature Cell Biology, 2021, 23, 219-231.	4.6	22
10	Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Science Immunology, 2021, 6, .	5.6	19
11	OBF1 and Oct factors control the germinal center transcriptional program. Blood, 2021, 137, 2920-2934.	0.6	17
12	The gene regulatory network controlling plasma cell function. Immunological Reviews, 2021, 303, 23-34.	2.8	18
13	A microRNA expression and regulatory element activity atlas of the mouse immune system. Nature Immunology, 2021, 22, 914-927.	7.0	19
14	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	7.0	97
15	The role of PLCÎ ³ 2 in immunological disorders, cancer, and neurodegeneration. Journal of Biological Chemistry, 2021, 297, 100905.	1.6	39
16	Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis. Science Immunology, 2021, 6, eabf7268.	5.6	3
17	Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncolmmunology, 2021, 10, 1900508.	2.1	57
18	Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends in Immunology, 2021, 42, 1113-1127.	2.9	16

#	Article	IF	CITATIONS
19	CCR2 enhances CD25 expression by FoxP3+ regulatory T cells and regulates their abundance independently of chemotaxis and CCR2+ myeloid cells. Cellular and Molecular Immunology, 2020, 17, 123-132.	4.8	23
20	Plasmacytoid dendritic cells from parent strains of the NZB/W F1 lupus mouse contribute different characteristics to autoimmune propensity. Immunology and Cell Biology, 2020, 98, 203-214.	1.0	1
21	A new lymphoid-primed progenitor marked by Dach1 downregulation identified with single cell multi-omics. Nature Immunology, 2020, 21, 1574-1584.	7.0	20
22	Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance. Cell Reports, 2020, 33, 108285.	2.9	7
23	Liver Immune Profiling Reveals Pathogenesis and Therapeutics for Biliary Atresia. Cell, 2020, 183, 1867-1883.e26.	13.5	70
24	An Erg-driven transcriptional program controls B cell lymphopoiesis. Nature Communications, 2020, 11, 3013.	5.8	29
25	Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity, 2020, 52, 942-956.	6.6	90
26	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	13.7	141
27	EZH2 function in immune cell development. Biological Chemistry, 2020, 401, 933-943.	1.2	60
28	Cytotoxic T Lymphocytes and Natural Killer Cells. , 2019, , 247-259.e1.		12
29	Context-Dependent Role for T-bet in T Follicular Helper Differentiation and Germinal Center Function following Viral Infection. Cell Reports, 2019, 28, 1758-1772.e4.	2.9	40
30	Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 258-272.e9.	5.2	60
31	Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nature Immunology, 2019, 20, 1372-1380.	7.0	17
32	PU.1 controls fibroblast polarization and tissue fibrosis. Nature, 2019, 566, 344-349.	13.7	121
33	The cis-Regulatory Atlas of the Mouse Immune System. Cell, 2019, 176, 897-912.e20.	13.5	315
34	New players in the gene regulatory network controlling late B cell differentiation. Current Opinion in Immunology, 2019, 58, 68-74.	2.4	24
35	Transcription factors IRF8 and PU.1 are required for follicular B cell development and BCL6-driven germinal center responses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9511-9520.	3.3	49

#	Article	IF	CITATIONS
37	Directing the conductor: TNF regulation of HSCs. Blood, 2019, 133, 771-773.	0.6	1
38	IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Reports, 2019, 29, 2634-2645.e5.	2.9	47
39	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
40	Hippo Pathway Kinase Mst1 Is Required for Long-Lived Humoral Immunity. Journal of Immunology, 2019, 202, 69-78.	0.4	21
41	Viral Replicative Capacity, Antigen Availability via Hematogenous Spread, and High T _{FH} :T _{FR} Ratios Drive Induction of Potent Neutralizing Antibody Responses. Journal of Virology, 2019, 93, .	1.5	3
42	Plasma cells: The programming of an antibodyâ€secreting machine. European Journal of Immunology, 2019, 49, 30-37.	1.6	71
43	Polycomb repressive complex 2 is a critical mediator of allergic inflammation. JCI Insight, 2019, 4, .	2.3	16
44	Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 681.	4.5	120
45	Characterization of Blimp-1 function in effector regulatory T cells. Journal of Autoimmunity, 2018, 91, 73-82.	3.0	36
46	Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9630-E9639.	3.3	52
47	Transcription-factor-mediated supervision of global genome architecture maintains B cell identity. Nature Immunology, 2018, 19, 1257-1264.	7.0	83
48	IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos. Blood, 2018, 132, 2166-2178.	0.6	65
49	Mining the Plasma Cell Transcriptome for Novel Cell Surface Proteins. International Journal of Molecular Sciences, 2018, 19, 2161.	1.8	17
50	PU.1 Is Required for the Developmental Progression of Multipotent Progenitors to Common Lymphoid Progenitors. Frontiers in Immunology, 2018, 9, 1264.	2.2	30
51	Editorial overview: Lymphocyte development and activation. Current Opinion in Immunology, 2018, 51, iv-vi.	2.4	1
52	<scp>LMP</scp> 2 immunoproteasome promotes lymphocyte survival by degrading apoptotic <scp>BH</scp> 3â€only proteins. Immunology and Cell Biology, 2018, 96, 981-993.	1.0	4
53	Transcription Factor Theft—PU.1 Caught Red-Handed. Immunity, 2018, 48, 1063-1065.	6.6	0
54	Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb. Immunity, 2017, 46, 78-91.	6.6	83

#	Article	IF	CITATIONS
55	A non anonical function of Ezh2 preserves immune homeostasis. EMBO Reports, 2017, 18, 619-631.	2.0	73
56	The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nature Communications, 2017, 8, 14911.	5.8	27
57	NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. Journal of Immunology, 2017, 198, 1142-1155.	0.4	53
58	Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis. Cancer Immunology Research, 2017, 5, 1098-1108.	1.6	98
59	Standing out from the crowd: How to identify plasma cells. European Journal of Immunology, 2017, 47, 1276-1279.	1.6	57
60	Natural-Killer-like B Cells Display the Phenotypic and Functional Characteristics of Conventional B Cells. Immunity, 2017, 47, 199-200.	6.6	16
61	Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nature Communications, 2017, 8, 1426.	5.8	71
62	Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1. Frontiers in Immunology, 2017, 8, 383.	2.2	17
63	IL-17-producing $\hat{I}^3\hat{I}$ T cells switch migratory patterns between resting and activated states. Nature Communications, 2017, 8, 15632.	5.8	99
64	Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. Nature Communications, 2016, 7, 13600.	5.8	71
65	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1095-1111.	4.2	53
66	Th17 cell differentiation proceeds independently of IRF8. Immunology and Cell Biology, 2016, 94, 796-801.	1.0	7
67	Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Reports, 2016, 16, 3311-3321.	2.9	25
68	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	5.2	136
69	Long-Lived Plasma Cells Have a Sweet Tooth. Immunity, 2016, 45, 3-5.	6.6	15
70	Opposing Development of Cytotoxic and Follicular Helper CD4ÂT Cells Controlled by the TCF-1-Bcl6 Nexus. Cell Reports, 2016, 17, 1571-1583.	2.9	47
71	RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Reports, 2016, 15, 866-878.	2.9	50
72	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	6.6	101

STEPHEN L. NUTT

#	Article	IF	CITATIONS
73	Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunology, 2016, 17, 331-343.	7.0	284
74	Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nature Immunology, 2016, 17, 323-330.	7.0	310
75	Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation. Cell Reports, 2016, 14, 68-81.	2.9	193
76	PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia, 2016, 30, 1375-1387.	3.3	53
77	A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nature Immunology, 2016, 17, 422-432.	7.0	145
78	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Cell Biology, 2016, 213, 21350IA110.	2.3	1
79	Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. Journal of Clinical Investigation, 2016, 126, 3453-3466.	3.9	129
80	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92
81	MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood, 2015, 125, 1910-1921.	0.6	47
82	Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 1301-1311.	3.3	27
83	The generation of antibody-secreting plasma cells. Nature Reviews Immunology, 2015, 15, 160-171.	10.6	1,034
84	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	7.0	442
85	PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carcinogenesis, 2015, 36, 413-419.	1.3	39
86	Donald Metcalf (1929–2014). Immunology and Cell Biology, 2015, 93, 219-220.	1.0	0
87	Targeting Antigen to Clec9A Primes Follicular Th Cell Memory Responses Capable of Robust Recall. Journal of Immunology, 2015, 195, 1006-1014.	0.4	65
88	Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature Communications, 2015, 6, 6750.	5.8	138
89	c-Myb is required for plasma cell migration to bone marrow after immunization or infection. Journal of Experimental Medicine, 2015, 212, 1001-1009.	4.2	32
90	Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1. Genes and Development, 2015, 29, 832-848.	2.7	59

#	Article	IF	CITATIONS
91	Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nature Immunology, 2015, 16, 663-673.	7.0	332
92	Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. Journal of Neuroinflammation, 2015, 12, 40.	3.1	15
93	Interleukin-21-Producing CD4+ T Cells Promote Type 2 Immunity to House Dust Mites. Immunity, 2015, 43, 318-330.	6.6	132
94	Establishing and maintaining the Langerhans cell network. Seminars in Cell and Developmental Biology, 2015, 41, 23-29.	2.3	26
95	The flavors of plasma cells. Oncotarget, 2015, 6, 32305-32306.	0.8	1
96	TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	2.8	75
97	Correction: A Reporter Mouse Reveals Lineage-Specific and Heterogeneous Expression of IRF8 during Lymphoid and Myeloid Cell Differentiation. Journal of Immunology, 2014, 193, 4749-4749.	0.4	1
98	Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells. Genomics Data, 2014, 2, 396-398.	1.3	4
99	Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation. Immunity, 2014, 41, 1040-1051.	6.6	450
100	The Closely Related CD103+ Dendritic Cells (DCs) and Lymphoid-Resident CD8+ DCs Differ in Their Inflammatory Functions. PLoS ONE, 2014, 9, e91126.	1.1	30
101	A Reporter Mouse Reveals Lineage-Specific and Heterogeneous Expression of IRF8 during Lymphoid and Myeloid Cell Differentiation. Journal of Immunology, 2014, 193, 1766-1777.	0.4	65
102	Transcriptional Control of Pre-B Cell Development and Leukemia Prevention. Current Topics in Microbiology and Immunology, 2014, 381, 189-213.	0.7	15
103	Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. Journal of Immunology, 2014, 192, 3200-3206.	0.4	107
104	Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290.	15.2	79
105	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	3.5	67
106	The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. Journal of Experimental Medicine, 2014, 211, 2169-2181.	4.2	126
107	Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539.	5.8	156
108	Deciphering the epigenetic code of T lymphocytes. Immunological Reviews, 2014, 261, 50-61.	2.8	15

1

#	Article	IF	CITATIONS
109	Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes and Development, 2014, 28, 1337-1350.	2.7	73
110	The miR-155–PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. Journal of Experimental Medicine, 2014, 211, 2183-2198.	4.2	83
111	Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood, 2014, 123, 3420-3428.	0.6	23
112	The unique features of follicular T cell subsets. Cellular and Molecular Life Sciences, 2013, 70, 4771-4784.	2.4	33
113	Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. Journal of Experimental Medicine, 2013, 210, 2967-2980.	4.2	109
114	Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation. Science, 2013, 341, 670-673.	6.0	238
115	The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013, 14, 1155-1165.	7.0	337
116	Inhibition of human B-cell development into plasmablasts by histone deacetylase inhibitor valproic acid. Journal of Allergy and Clinical Immunology, 2013, 131, 1695-1699.e9.	1.5	37
117	Mcl-1 is essential for the survival of plasma cells. Nature Immunology, 2013, 14, 290-297.	7.0	273
118	The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nature Immunology, 2013, 14, 389-395.	7.0	264
119	M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature, 2013, 497, 239-243.	13.7	316
120	Differentiation and function of Foxp3+ effector regulatory T cells. Trends in Immunology, 2013, 34, 74-80.	2.9	225
121	Polycomb repressive complex 2 (PRC2) suppresses Eμ-myc lymphoma. Blood, 2013, 122, 2654-2663.	0.6	26
122	Regulation of murine natural killer cell commitment. Frontiers in Immunology, 2013, 4, 14.	2.2	33
123	Constitutively CD40–Activated B Cells Regulate CD8 T Cell Inflammatory Response by IL-10 Induction. Journal of Immunology, 2013, 190, 3189-3196.	0.4	8
124	Id2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation. Journal of Immunology, 2013, 190, 4585-4594.	0.4	81
125	CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood, 2013, 121, 1574-1583.	0.6	95

126 Cytotoxic T lymphocytes and natural killer cells. , 2013, , 215-227.

8

#	Article	IF	CITATIONS
127	High Rate of Antibody Secretion Is not Integral to Plasma Cell Differentiation as Revealed by XBP-1 Deficiency. Journal of Immunology, 2012, 189, 3328-3338.	0.4	112
128	Human lymphoma mutations reveal CARD11 as the switch between self-antigen–induced B cell death or proliferation and autoantibody production. Journal of Experimental Medicine, 2012, 209, 1907-1917.	4.2	38
129	Editorial overview. Current Opinion in Immunology, 2012, 24, 253-254.	2.4	0
130	Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nature Immunology, 2012, 13, 35-43.	7.0	249
131	The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nature Immunology, 2012, 13, 491-498.	7.0	294
132	Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clinical and Experimental Immunology, 2012, 167, 282-295.	1.1	83
133	Transcriptional programming of the dendritic cell network. Nature Reviews Immunology, 2012, 12, 101-113.	10.6	258
134	CXCR3-Dependent Plasma Blast Migration to the Central Nervous System during Viral Encephalomyelitis. Journal of Virology, 2011, 85, 6136-6147.	1.5	53
135	The genetic network controlling plasma cell differentiation. Seminars in Immunology, 2011, 23, 341-349.	2.7	188
136	The Transcription Factor PU.1 Regulates $\hat{I}^{\hat{J}}\hat{I}$ T Cell Homeostasis. PLoS ONE, 2011, 6, e22189.	1.1	9
137	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development (Cambridge), 2011, 138, 797-797.	1.2	1
138	A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood, 2011, 117, 1869-1879.	0.6	134
139	Identification of the earliest NK-cell precursor in the mouse BM. Blood, 2011, 117, 5449-5452.	0.6	155
140	The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology, 2011, 12, 304-311.	7.0	530
141	Germinal center B and follicular helper T cells: siblings, cousins or just good friends?. Nature Immunology, 2011, 12, 472-477.	7.0	192
142	ld2 expression delineates differential checkpoints in the genetic program of CD8α ⁺ and CD103 ⁺ dendritic cell lineages. EMBO Journal, 2011, 30, 2690-2704.	3.5	121
143	SUMOylation of Blimpâ€1 promotes its proteasomal degradation. FEBS Letters, 2011, 585, 2405-2409.	1.3	16
144	Endogenous microglia regulate development of embryonic cortical precursor cells. Journal of Neuroscience Research, 2011, 89, 286-298.	1.3	123

#	Article	IF	CITATIONS
145	B cells need their flipâ€flops. Immunology and Cell Biology, 2011, 89, 751-752.	1.0	1
146	Blimp1: Driving Terminal Differentiation to a T. Advances in Experimental Medicine and Biology, 2011, 780, 85-100.	0.8	12
147	Critical roles for c-Myb in lymphoid priming and early B-cell development. Blood, 2010, 115, 2796-2805.	0.6	62
148	The Transcription Factor PU.1 Controls Dendritic Cell Development and Flt3 Cytokine Receptor Expression in a Dose-Dependent Manner. Immunity, 2010, 32, 628-641.	6.6	233
149	Surprising new roles for PU.1 in the adaptive immune response. Immunological Reviews, 2010, 238, 63-75.	2.8	75
150	Bach2: plasma-cell differentiation takes a break. EMBO Journal, 2010, 29, 3896-3897.	3.5	11
151	The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nature Immunology, 2010, 11, 527-534.	7.0	496
152	Give and take in the germinal center. Nature Immunology, 2010, 11, 464-466.	7.0	7
153	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development (Cambridge), 2010, 137, 3899-3910.	1.2	127
154	IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. Journal of Experimental Medicine, 2010, 207, 365-378.	4.2	661
155	Mcl-1 Is Essential for Germinal Center Formation and B Cell Memory. Science, 2010, 330, 1095-1099.	6.0	196
156	The Interactions of Multiple Cytokines Control NK Cell Maturation. Journal of Immunology, 2010, 185, 6679-6688.	0.4	110
157	Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood, 2010, 115, 344-352.	0.6	29
158	Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation Journal of Cell Science, 2010, 123, e1-e1.	1.2	0
159	IFN Regulatory Factor 4 Regulates the Expression of a Subset of Th2 Cytokines. Journal of Immunology, 2009, 183, 1598-1606.	0.4	122
160	PU.1 Regulates TCR Expression by Modulating GATA-3 Activity. Journal of Immunology, 2009, 183, 4887-4894.	0.4	58
161	CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3895-3900.	3.3	114
162	Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nature Immunology, 2009, 10, 289-296.	7.0	116

#	Article	IF	CITATIONS
163	Blimp-1 Transcription Factor Is Required for the Differentiation of Effector CD8+ T Cells and Memory Responses. Immunity, 2009, 31, 283-295.	6.6	424
164	Analysis of Interleukin-21-Induced Prdm1 Gene Regulation Reveals Functional Cooperation of STAT3 and IRF4 Transcription Factors. Immunity, 2009, 31, 941-952.	6.6	317
165	Blimp1 is limiting for transformation in a mouse plasmacytoma model. Blood, 2009, 113, 5911-5919.	0.6	17
166	Blimp-1 Connects the Intrinsic and Extrinsic Regulation of T Cell Homeostasis. Journal of Clinical Immunology, 2008, 28, 97-106.	2.0	17
167	Losing B cell identity. BioEssays, 2008, 30, 203-207.	1.2	17
168	The regulation of the Bâ€cell gene expression programme by Pax5. Immunology and Cell Biology, 2008, 86, 47-53.	1.0	58
169	Plasma cell development: From B-cell subsets to long-term survival niches. Seminars in Immunology, 2008, 20, 49-58.	2.7	172
170	Critical roles for c-Myb in hematopoietic progenitor cells. Seminars in Immunology, 2008, 20, 247-256.	2.7	119
171	Identification of Pax5 Target Genes in Early B Cell Differentiation. Journal of Immunology, 2008, 180, 1719-1728.	0.4	124
172	B-Cell Identity — Commitment Is Not Forever. New England Journal of Medicine, 2008, 358, 82-83.	13.9	6
173	Exposing the core of early thymopoiesis. Blood, 2008, 112, 454-454.	0.6	Ο
174	Cytotoxic lymphocyte function and natural killer cells. , 2008, , 271-285.		0
175	NK Cell Maturation and Peripheral Homeostasis Is Associated with KLRG1 Up-Regulation. Journal of Immunology, 2007, 178, 4764-4770.	0.4	272
176	Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development (Cambridge), 2007, 134, 4335-4345.	1.2	119
177	Agm1/Pgm3-Mediated Sugar Nucleotide Synthesis Is Essential for Hematopoiesis and Development. Molecular and Cellular Biology, 2007, 27, 5849-5859.	1.1	73
178	Different Kinetics of Blimp-1 Induction in B Cell Subsets Revealed by Reporter Gene. Journal of Immunology, 2007, 178, 4104-4111.	0.4	101
179	Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590.	4.2	108
180	Aberrant mast-cell differentiation in mice lacking the stem-cell leukemia gene. Blood, 2007, 110, 3573-3581.	0.6	25

#	Article	IF	CITATIONS
181	FcÎ ³ RIII-Dependent Inhibition of Interferon-Î ³ Responses Mediates Suppressive Effects of Intravenous Immune Globulin. Immunity, 2007, 26, 67-78.	6.6	147
182	Initiation of Plasma-Cell Differentiation Is Independent of the Transcription Factor Blimp-1. Immunity, 2007, 26, 555-566.	6.6	220
183	The Transcriptional Regulation of B Cell Lineage Commitment. Immunity, 2007, 26, 715-725.	6.6	322
184	The Transcriptional Regulation of B Cell Lineage Commitment. Immunity, 2007, 27, 361.	6.6	1
185	Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis?. Trends in Immunology, 2007, 28, 108-114.	2.9	64
186	Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells. Science, 2007, 317, 337-337.	6.0	719
187	Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nature Immunology, 2007, 8, 856-863.	7.0	231
188	BLIMP1 guides the fate of effector B and T cells. Nature Reviews Immunology, 2007, 7, 923-927.	10.6	128
189	Terminal differentiation of lymphocytes depends on Blimp-1. Current Opinion in Immunology, 2007, 19, 156-162.	2.4	118
190	NK cells promote peritoneal xenograft rejection through an IFN-?-dependent mechanism. Xenotransplantation, 2006, 13, 536-546.	1.6	18
191	Functional subsets of mouse natural killer cells. Immunological Reviews, 2006, 214, 47-55.	2.8	222
192	IL-7 and the thymus dictate the NK cell 'labor market'. Nature Immunology, 2006, 7, 1134-1136.	7.0	8
193	Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunology, 2006, 7, 466-474.	7.0	300
194	Specification of the Primitive Myeloid Precursor Pool Requires Signaling through Alk8 in Zebrafish. Current Biology, 2006, 16, 506-511.	1.8	47
195	Transient Notch signaling induces NK cell potential in Pax5-deficient pro-B cells. European Journal of Immunology, 2006, 36, 3294-3304.	1.6	45
196	Pax5 Maintains Cellular Identity by Repressing Gene Expression Throughout B Cell Differentiation. Cell Cycle, 2006, 5, 2452-2456.	1.3	19
197	Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes and Development, 2006, 20, 933-938.	2.7	103
198	High affinity germinal center B cells are actively selected into the plasma cell compartment. Journal of Experimental Medicine, 2006, 203, 2419-2424.	4.2	322

#	Article	IF	CITATIONS
199	Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. Journal of Experimental Medicine, 2006, 203, 2683-2690.	4.2	177
200	Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes and Development, 2006, 20, 1175-1186.	2.7	148
201	Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1486-1491.	3.3	92
202	The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood, 2005, 106, 2083-2090.	0.6	77
203	Differential requirement for OBF-1 during antibody-secreting cell differentiation. Journal of Experimental Medicine, 2005, 201, 1385-1396.	4.2	61
204	Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. Journal of Experimental Medicine, 2005, 201, 1973-1985.	4.2	157
205	Early appearance of germinal center–derived memory B cells and plasma cells in blood after primary immunization. Journal of Experimental Medicine, 2005, 201, 545-554.	4.2	238
206	A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells. Journal of Experimental Medicine, 2005, 201, 1421-1433.	4.2	72
207	PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. Journal of Experimental Medicine, 2005, 201, 1487-1502.	4.2	248
208	Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. Journal of Experimental Medicine, 2005, 201, 221-231.	4.2	294
209	Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression. Journal of Experimental Medicine, 2004, 200, 967-977.	4.2	470
210	IL-21 Induces the Functional Maturation of Murine NK Cells. Journal of Immunology, 2004, 172, 2048-2058.	0.4	294
211	Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. Journal of Cell Biology, 2004, 164, 89-96.	2.3	67
212	PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood, 2004, 104, 3437-3444.	0.6	130
213	Interleukin 21: A Key Player in Lymphocyte Maturation. Critical Reviews in Immunology, 2004, 24, 239-250.	1.0	35
214	Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1377-1382.	3.3	98
215	Comparison of morpholino based translational inhibition during the development ofXenopus laevis andXenopus tropicalis. Genesis, 2001, 30, 110-113.	0.8	78
216	Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes and Development, 2001, 15, 1152-1166.	2.7	141

#	Article	IF	CITATIONS
217	Pax5 Determines the Identity of B Cells from the Beginning to the End of B-lymphopoiesis. International Reviews of Immunology, 2001, 20, 65-82.	1.5	110
218	Lineage commitment in lymphopoiesis. Current Opinion in Immunology, 2000, 12, 151-158.	2.4	83
219	Fidelity and infidelity inÂcommitment to B-lymphocyte lineage development. Immunological Reviews, 2000, 175, 104-111.	2.8	56
220	Monoallelic Expression of Pax5: A Paradigm for the Haploinsufficiency of Mammalian Pax Genes?. Biological Chemistry, 1999, 380, 601-11.	1.2	42
221	Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 1999, 402, 14-20.	13.7	7
222	Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 1999, 401, 556-562.	13.7	1,036
223	Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature, 1999, 401, 603-606.	13.7	354
224	Independent regulation of the two Pax5 alleles during B-cell development. Nature Genetics, 1999, 21, 390-395.	9.4	133
225	Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO Journal, 1998, 17, 2319-2333.	3.5	265
226	Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Seminars in Immunology, 1998, 10, 133-142.	2.7	67
227	Early Function of Pax5 (BSAP) before the Pre-B Cell Receptor Stage of B Lymphopoiesis. Journal of Experimental Medicine, 1998, 188, 735-744.	4.2	40
228	Role of the Transcription Factor BSAP (Pax-5) in B-Cell Development. , 1998, , 83-110.		12
229	Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus Genes and Development, 1997, 11, 476-491.	2.7	360
230	Essential Functions of Pax-5 (BSAP) in pro-B Cell Development. Immunobiology, 1997, 198, 227-235.	0.8	52
231	Expression and characerization of human kainate receptor subunits inEscherichia coli and mammalian cells. Drug Development Research, 1995, 34, 260-266.	1.4	1
232	Human glutamate receptor hGluR3 flip and flop isoforms: Cloning and sequencing of the cDNAs and primary structure of the proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 563-566.	2.4	11
233	Differential RNA editing in human brain. NeuroReport, 1994, 5, 1551-1552.	0.6	0
234	Differential RNA editing efficiency of AMPA receptor subunit GluR-2 in human brain. NeuroReport, 1994, 5, 1679-1683.	0.6	38

#	Article	IF	CITATIONS
235	RNA editing of human kainate receptor subunits. NeuroReport, 1994, 5, 2625-2629.	0.6	17
236	Molecular Cloning, Expression, and Pharmacological Characterization of humEAA1, a Human Kainate Receptor Subunit. Journal of Neurochemistry, 1994, 62, 1-9.	2.1	52
237	<i>Hhex<i> Is Essential for NK Cell Persistence by Repressing Bcl2l11-Dependent Apoptosis</i></i> . SSRN Electronic Journal, 0, , .	0.4	0