Adeline Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404358/publications.pdf

Version: 2024-02-01

24 papers 2,963 citations

21 h-index

377584

685536 24 g-index

28 all docs

28 docs citations

28 times ranked

3402 citing authors

#	Article	IF	CITATIONS
1	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	1.5	902
2	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	5.8	481
3	<i>Botrytis cinerea</i> virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277, 1-10.	0.7	392
4	The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea. PLoS Genetics, 2014, 10, e1004040.	1.5	130
5	Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology, 2003, 50, 1451-1465.	1.2	126
6	The Gî± subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase coâ€ordinately regulate gene expression in the grey mould fungus <i>Botrytis cinerea</i> . Molecular Microbiology, 2008, 67, 1027-1050.	1.2	99
7	The VELVET Complex in the Gray Mold Fungus <i>Botrytis cinerea</i> : Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 659-674.	1.4	97
8	Natural Variation in the VELVET Gene bovel 1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea. PLoS ONE, 2012, 7, e47840.	1.1	89
9	BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2012, 13, 704-718.	2.0	85
10	Analysis of the Molecular Dialogue Between Gray Mold ($<$ i>Botrytis cinerea $<$ /i>) and Grapevine ($<$ i>Vitis vinifera $<$ /i>) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions, 2015, 28, 1167-1180.	1.4	73
11	The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genetics and Biology, 2016, 96, 33-46.	0.9	60
12	Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics, 2019, 65, 965-980.	0.8	57
13	Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Current Genetics, 2017, 63, 931-949.	0.8	50
14	Expression Profiling of Botrytis cinerea Genes Identifies Three Patterns of Up-regulation in Planta and an FKBP12 Protein Affecting Pathogenicity. Journal of Molecular Biology, 2006, 358, 372-386.	2.0	44
15	Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genetics and Biology, 2013, 52, 9-19.	0.9	39
16	ANAIS: Analysis of NimbleGen Arrays Interface. Bioinformatics, 2010, 26, 2468-2469.	1.8	38
17	Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in <i>Botrytis cinerea</i> . Environmental Microbiology, 2018, 20, 2469-2482.	1.8	37
18	Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Eukaryotic Cell, 2015, 14, 636-651.	3.4	34

#	Article	IF	CITATIONS
19	A novel <scp>Z</scp> n ₂ <scp>C</scp> ys ₆ transcription factor <scp>B</scp> c <scp>G</scp> aescp>R regulates <scp>D</scp> â€galacturonic acid utilization in <scp><i>B</i></scp> <i>BCop>Cop>Cop>Cop>Cop>Cop>Cop>Cop>Cop>Cop</i>	1.2	31
20	Light governs asexual differentiation in the grey mould fungus <i>Botrytis cinerea</i> via the putative transcription factor BcLTF2. Environmental Microbiology, 2016, 18, 4068-4086.	1.8	29
21	DNA fingerprinting and new tools for fineâ€scale discrimination of <i>Arabidopsis thaliana</i> accessions. Plant Journal, 2012, 69, 1094-1101.	2.8	26
22	A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants?. Frontiers in Microbiology, 2019, 10, 2829.	1.5	18
23	Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen <i>Botrytis cinerea</i> in France. Phytopathology, 2021, 111, 2355-2366.	1.1	11
24	Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways. Journal of Proteomics, 2020, 212, 103580.	1.2	5